Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc mít
Xem chi tiết
Mai Thanh Sơn
Xem chi tiết
Phan Anh Duc
Xem chi tiết
Miuuu
Xem chi tiết
Lacy Luna Scamander
Xem chi tiết
Trên con đường thành côn...
5 tháng 8 2021 lúc 9:38

undefined

Trên con đường thành côn...
5 tháng 8 2021 lúc 9:42

Bạn xem lại đề câu e nhé.

undefined

Ngô Minh Hiếu
Xem chi tiết
Nguyễn Huy Tú
25 tháng 8 2021 lúc 14:50

\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)

Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)

Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003 

\(B=5,5-\left|2x-5\right|\le5,5\)

Dấu ''='' xảy ra khi x = 5/2

Vậy GTLN của B bằng 5,5 tại x = 5/2 

Khách vãng lai đã xóa
Hùng Hoàng
Xem chi tiết
HT.Phong (9A5)
25 tháng 10 2023 lúc 18:38

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

Hùng Hoàng
25 tháng 10 2023 lúc 18:45

câu a) bạn viết sai đề rồi

 

Lê Phương Mai
Xem chi tiết
Trên con đường thành côn...
19 tháng 7 2021 lúc 18:31

undefined

Trên con đường thành côn...
19 tháng 7 2021 lúc 18:37

undefinedundefined

Tư Linh
19 tháng 7 2021 lúc 18:40

bạn xem lại đề bài 1 là GTNN hay GTLN nha

satoshi-gekkouga
Xem chi tiết
Xyz OLM
1 tháng 6 2021 lúc 17:09

Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)

Vậy Min A  = -1 <=> X = -1/6

Khách vãng lai đã xóa
Nguyễn Hải Minh
1 tháng 6 2021 lúc 17:10

a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)

Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6

Khách vãng lai đã xóa
Xyz OLM
1 tháng 6 2021 lúc 17:13

b) Sửa đề \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

Ta có \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\forall x\)

=> \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\forall x\)

Dấu "=" xảy ra <=> \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)

Vậy Max B = 3 <=> x = 3/10 

Khách vãng lai đã xóa