GTLN của a + b biết a, b nguyên dương thỏa mãn a.b = 100.
Tìm GTLN của a+b biết a,b nguyên dương thoả mãn a.b=100
\(\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)^2\ge4ab=400\)
\(\Rightarrow a+b\ge20\)
Dấu "=" xảy ra khi \(a=b=10\)
Tìm GTLN của a+b biết a,b nguyên dương thoả mãn a.b=100
\(ab=100\Leftrightarrow b=\frac{100}{a}\)
\(T=a+b=a+\frac{100}{a}=\left(a-100\right)+\frac{100}{a}-1+101\)
\(=\left(a-100\right)+\frac{100-a}{a}+101=\left(a-100\right)\left(1-\frac{1}{a}\right)+101\)
Với \(1\le a\le100\Rightarrow\hept{\begin{cases}a-100\le0\\1-\frac{1}{a}\ge0\end{cases}\Rightarrow\left(a-100\right)\left(1-\frac{1}{a}\right)\le0\Rightarrow T\le101}\)
Vậy GTLN của a+b là 101 khi a=100, b=1 hoặc a=1, b=100
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ
Tìm số nguyên dương a, b, c thỏa mãn a.b = c; b.c = 4a; a.c = 9b
Biết a và b là các số nguyên dương thỏa mãn (a2 - a.b+ b2) chia hết cho 9. Chứng minh a chia hết cho3 và b chia hết cho 3
Em phải học hằng đảng thức lớp 8
Anh giải cho :
ta có:
<=> \(a^2-2ab+b+ab⋮9\)
<=> \(\left(a-b\right)^2+ab⋮9\)
=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)
Xét \(\left(a-b\right)^2⋮9\)
<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)
Xét \(ab⋮9\)
<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)
Từ (1) và (2) => \(a⋮3\)
\(b⋮3\)
Answer:
Ta có:
\(a^2-ab+b^2⋮9⋮3\)
\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2⋮3\)
\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)
\(\Rightarrow\left(a+b\right)^2⋮9\)
Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)
\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)
Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3
Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)
Cho a, b nguyên dương thỏa mãn: (1/a)+(1/2b)=1/3
CMR: a.b<=24
Gọi x, y là các số thực dương thỏa mãn log 9 x = log 12 y = log 16 x + y và x y = − a + b 2 , với a, b là hai số nguyên dương. Tính P = a . b
A. P=6
B. P =5
C.P=8
D. P = 4
Đáp án B
Đặt log 9 x = log 12 y = log 16 x + y = t ⇔ x = 9 t y = 12 t và x + y = 16 t
Suy ra 9 t + 12 t = 16 t ⇔ 3 t 2 + 3 t .4 t − 4 t 2 = 0 ⇔ 3 4 t 2 + 3 4 t − 1 = 0 ⇔ 3 4 t = − 1 + 5 2
Vậy x y = 9 t 12 t = 3 4 t = − 1 + 5 2 = − a + b 2 ⇔ a = 1 b = 5 ⇒ P = a b = 5
Cho a,b là những số nguyên dương thỏa mãn a+b=201.Tìm GTNN và GTLN của biểu thức P=a(a2+b)+b(b2+a)
Cho các số nguyên dương a,b,x,y thỏa mãn các đẳng thức: a+b=x+y ; a.b-a=x.y. Chứng tỏ rằng x khác y