Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vu Vo
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 13:37

\(\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)^2\ge4ab=400\)

\(\Rightarrow a+b\ge20\)

Dấu "=" xảy ra khi \(a=b=10\)

Zhaoliying16
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
26 tháng 2 2021 lúc 11:36

\(ab=100\Leftrightarrow b=\frac{100}{a}\)

\(T=a+b=a+\frac{100}{a}=\left(a-100\right)+\frac{100}{a}-1+101\)

\(=\left(a-100\right)+\frac{100-a}{a}+101=\left(a-100\right)\left(1-\frac{1}{a}\right)+101\)

Với \(1\le a\le100\Rightarrow\hept{\begin{cases}a-100\le0\\1-\frac{1}{a}\ge0\end{cases}\Rightarrow\left(a-100\right)\left(1-\frac{1}{a}\right)\le0\Rightarrow T\le101}\)

Vậy GTLN của a+b là 101 khi a=100, b=1 hoặc a=1, b=100

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 5 2020 lúc 22:57

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

Khách vãng lai đã xóa
Thanh Vân
26 tháng 7 lúc 16:10

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

Lê Hà Hoàng Minh
Xem chi tiết
Lê Hà Hoàng Minh
26 tháng 3 2019 lúc 15:20

help me

sweets bts
Xem chi tiết
Luffy123
22 tháng 1 2019 lúc 21:21

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

Yen Nhi
26 tháng 11 2021 lúc 13:04

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

Khách vãng lai đã xóa
Nyx Artemis
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2019 lúc 5:03

Đáp án B

Đặt log 9 x = log 12 y = log 16 x + y = t ⇔ x = 9 t y = 12 t  và x + y = 16 t  

Suy ra  9 t + 12 t = 16 t ⇔ 3 t 2 + 3 t .4 t − 4 t 2 = 0 ⇔ 3 4 t 2 + 3 4 t − 1 = 0 ⇔ 3 4 t = − 1 + 5 2

Vậy  x y = 9 t 12 t = 3 4 t = − 1 + 5 2 = − a + b 2 ⇔ a = 1 b = 5 ⇒ P = a b = 5

Hoa Thân
Xem chi tiết
Lưu Thị Thu Phương
Xem chi tiết
Nguyễn Phương My
10 tháng 4 2017 lúc 22:28

Phương điên, lớp 6a5