\(x ( x − 1 ) + x ( x + 1 ) + ( x − 1 ) ( x + 1 ) = 242\)
(x-1)^5 + (x+3)^5 =242 ( x+1)
(x-1)mũ 5+(x+3)mũ 5=242(x+1)
Giải phương trình:
a, (4 - x)5 + (x - 2)5 = 32
b, (x - 1)5 + (x - 3)5 = 242(x + 1)
a, (4 - x )5 +(x - 2)5 =32
(=) 1024 - x5 + x5 - 32 = 32
(=) -x5 + x5 = 32 + 32 - 1024
(=) 0x = -960
=) phương trình vô nghiệm
(x-1)5+(x+3)5=242(x+1)
3) (x−1)5+(x+3)5=242(x+1)(x−1)5+(x+3)5=242(x+1)
- Đặt x+1=y⇒x−1=y−2;x+3=y+2x+1=y⇒x−1=y−2;x+3=y+2
- Ta có:
(y−2)5+(y+2)5=242y(y−2)5+(y+2)5=242y
⇔y5−5y4+40y3−80y2+80y−32+y5+5y4+40y3+80y2+80y+32=242y⇔y5−5y4+40y3−80y2+80y−32+y5+5y4+40y3+80y2+80y+32=242y
⇔2y5+80y3+160y−242y=0⇔2y5+80y3+160y−242y=0
⇔2y5+80y3−82y=0⇔2y5+80y3−82y=0
⇔2y(y4+40y2−41)=0⇔2y(y4+40y2−41)=0
⇔2y(y4+41y2−y2−41)=0⇔2y(y4+41y2−y2−41)=0
⇔2y[y2(y2+41)−(y2+41)]=0⇔2y[y2(y2+41)−(y2+41)]=0
⇔2y(y2−1)(y2+41)=0⇔2y(y2−1)(y2+41)=0
⇔2y(y−1)(y+1)(y2+41)=0⇔2y(y−1)(y+1)(y2+41)=0
⇔y=0;y−1=0⇒y=1;y+1=0⇒y=−1⇔y=0;y−1=0⇒y=1;y+1=0⇒y=−1
⇔y=0⇒x+1=0⇒x=−1⇔y=0⇒x+1=0⇒x=−1
⇔y=1⇒x+1=1⇒x=0⇔y=1⇒x+1=1⇒x=0
⇔y=−1⇒x+1=−1⇒x=−2
giải phương trình
A = ( x - 1)^5 + (x + 3)^5 = 242(x + 1)
Giải phương trình: \(\left(x-1\right)^5+\left(x+3\right)^5=242\left(x+1\right)\)
TÌM X HỘ MIK NHA MÌNH CẢM ƠN\(\left(X+\frac{1}{1\cdot3}\right)+\left(X+\frac{1}{3\cdot5}\right)+...+\left(X+\frac{1}{23\cdot25}\right)=11\cdot X+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)
Giải phương trình: \(\left(x-1\right)^5+\left(x+3\right)^5=242\left(x+1\right)\)
Giải phương trình sau: \(\left(x-1\right)^5+\left(x+3\right)^5=242\left(x+1\right)\))
phân tích đa thức thành nhân tử
(x-1)^5+(x+3)^5-242(x+1)
Đặt y=x+1
\(\left(x-1\right)^5=\left(y-2\right)^5\)
\(=y^5-5y^4+40y^3-80y^2+80y-32\)
\(\left(y+2\right)^5=y^5+5y^4+40y^3+80y^2+80y+32\)
\(A=\left(y+2\right)^5+\left(y-2\right)^5-242y\)
\(=2y^4+80y^3+160y-242y\)
\(=2y^4+80y^3-82y\)
\(=2y\left(y^2-1\right)\left(y^2+41\right)\)
\(=2y\left(y+1\right)\left(y-1\right)\left(y^2+41\right)\)
\(=2\left(x+1\right)\left(x+2\right)\cdot x\cdot\left[\left(x+1\right)^2+41\right]\)