Cho y=f(x)=1/6.x^3+1/2.x^2+1/3.x+1. Chứng minh f(x) nhận giá trị nguyên với x nguyên.
cho f(x)=\(ax^2\)+bx+c . biết f(0) , f(1) , f(2) đều là các số nguyên .chứng minh f(x) luôn nhận giá trị nguyên với mọi x nguyên
f(0) = c là số nguyên
f(1) = a + b + c là số nguyên => a + b là số nguyên
f(2) = 4a + 2b + c = 2(a+b) + 2a +c là số nguyên => 2a là số nguyên
Cho f(x)=ax\(^2\)+bx+c. Biết f(0),f(1),f(2)là số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x.
Ta có f(0)=a.02+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên
f(1)=a.1\(^{^2}\)+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
bn Nguyễn Minh Tuấn ơi
tại sao 2(2a+b) nguyên thì 2a+b nguyên vậy
Cho f(x) = \(\frac{1}{6}\)x3 - \(\frac{1}{6}\)x
chứng minh rằng f(x) luôn nhận giá trị nguyên vối mọi x là số nguyên
Ta có
\(f\left(x\right)=\frac{1}{6}x^3-\frac{1}{6}x\)
\(f\left(x\right)=\frac{1}{6}x\left(x^2-1\right)\)
Ta sẽ chứng minh x(x2-1) luôn chia hết cho 6
Thật vậy, ta có x(x2-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Ta có
ƒ x =
6
1 x
3 −
6
1 x
ƒ x =
6
1 x x
2 − 1
Ta sẽ chứng minh x(x2
-1) luôn chia hết cho 6
Thật vậy, ta có x(x2
-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2
-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Cho f(x) = ax^2 + bx + c, biết f(0), f(1), f(2) đều là các số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x thuộc Z
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
Bài 1:
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+2=2x+y\\2xy+y^2+3y=6\end{matrix}\right.\)
Bài 2:
cho đa thức: \(f\left(x\right)=x^4+6x^3+11x^2+6x\)
a, Phân tích f(x) thành phân tử
b, chứng minh rằng với mọi giá trị nguyên của x thì f(x)+1 luôn có giá trị là số chính phương
Câu 5:
Cho đường tròn (O), đường dính AB cố định. Điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\) AO. Kẻ dây MN vuông góc với AB tại I. gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E
a, Chứng minh tứ giác IECB nội tiếp
b, Chứng minh AM\(^2\)=AE.AC
c, Chứng minh AE.AC-AI.BI=AI\(^2\)
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU!!
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
Chứng minh rằng P(x) = 1 /6. x ^3 − 1/ 2. x^ 2 + 1 /3. x+ 2020 nhận giá trị nguyên với mọi số nguyên x
Cho đa thức f(x)=ax^3+bx^2+cx+d. Chứng minh rằng nếu f(x) nhận giá trị nguyên với mọi giá trị nguyên của x thì d; 2b; 6a là các số nguyên
Bạn tham khảo lời giải tại đây:
CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24
cho đa thức \(F\left(x\right)=\frac{1}{5}x^5+\frac{1}{3}x^3+\frac{7}{15}x+2008\)
chứng minh rằng F(x) luôn nhận giá trị nguyên với mọi x thuộc Z
cho f(x)= ax3+bx2+cx+d
a, Chứng minh nếu f(x) nhận giá trị nguyên với ,ọi x nguyên thì 6a, 2b, a+b+c, d đều là số nguyên
b Chứng minh rằng nếu 6a, 2b, a+b+c, d là các số nguyên thì f(x) nhân giá trị nguyên với mọi x nguyên