Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 22:13

a)

Ta có:

     G là trọng tâm của tam giác ABC (giao điểm của ba đường trung tuyến);

     H là trực tâm của tam giác ABC (giao điểm của ba đường cao);

     I là giao điểm của ba đường phân giác của tam giác ABC;

     O là giao điểm của ba đường trung trực của tam giác ABC (Đường trung trực đi qua trung điểm của cạnh và vuông góc với cạnh tại trung điểm đó).

Mà tam giác ABC đều nên trong tam giác ABC đường trung tuyến đồng thời là đường cao và là đường phân giác.

Vậy bốn điểm G, H, I, O trùng nhau hay nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau.

b) 

 

Giả sử trong tam giác ABC có hai điểm trùng nhau là H (trực tâm của tam giác) và I (giao của ba đường phân giác).

Hay AD, BE, CF vừa là đường cao, vừa là đường phân giác của tam giác ABC.

Xét tam giác ADB và tam giác ADC có:

\(\widehat {BAD} = \widehat {CAD}\) ( vì AD là tia phân giác của góc BAC)

AD chung;

\(\widehat {ADB} = \widehat {ADC}(=90^0)\) (vì \(AD \bot BC\));

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta AEB = \Delta CEB\)(c.g.c). Suy ra: AB = BC ( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều hay nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.

Đợi anh khô nước mắt
Xem chi tiết
Võ Đông Anh Tuấn
19 tháng 5 2016 lúc 20:23

A B C M G H N P

l҉o҉n҉g҉ d҉z҉
19 tháng 5 2016 lúc 20:23

Hình này đc Hông 

Võ Đông Anh Tuấn
19 tháng 5 2016 lúc 20:25

Thiên Ngoại Phi Tiên sai rồi cậu lấy trêm mạn mà đúng gì nẫu nói G là trực tâm H là đường cao , o cách đều ba đỉnh mà sao không có ba diểm đó

Nguyễn Thị Huyền Diệp
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
19 tháng 9 2023 lúc 15:37

Vì \(\Delta ABC\) đều nên AB = AC = BC (tính chất tam giác đều)

Vì I là điểm cách đều 3 cạnh của tam giác nên là giao điểm của 3 đường phân giác của tam giác ABC

Áp dụng ví dụ 2, ta được, AI là đường trung tuyến của \(\Delta ABC\)

Tương tự, ta cũng được BI, CI là đường trung tuyến của \(\Delta ABC\)

Vậy I là giao điểm của ba đường đường trung tuyến của \(\Delta ABC\) nên I là trọng tâm của \(\Delta ABC\).

Chú ý:

Với tam giác đều, giao điểm của 3 đường trung tuyến cũng là giao điểm của 3 đường phân giác.

Hồ Văn Đạt
Xem chi tiết
GV
5 tháng 2 2020 lúc 9:34

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của Thanh Thanh - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Lê Hữu Thịnh
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 9:02

Vẽ hình bình hành DAFH.

Gọi N là giao điểm của hai đường chéo DF và AH, M là giao điểm của EH và BC

Ta có NA = NH, ND = NF

Ta đặt ^ADH = ^AFH = \(\alpha\)thì ^BDH = ^HFC = \(\alpha\)+ 600

^DAF = 1800 -\(\alpha\)

^BAC = 3600 - ^BAD - ^CAF - ^DAF = 3600 - 600 - 600 - (1800 - \(\alpha\)) = \(\alpha\)+ 600

\(\Delta\)BDH và \(\Delta\)HFC có: BD = HF (= AD); ^BDH = ^HFC (cmt); DH = FC (= AF)

Do đó \(\Delta\)BDH = \(\Delta\)HFC (c.g.c) => HB = HC                                                           (1)

Chứng minh tương tự, ta được \(\Delta\)BAC = \(\Delta\)HFC (c.g.c) => BC = HC                   (2)

Từ (1) và (2) suy ra HB = HC = BC

Tứ giác BHCE có các cặp cạnh đối bằng nhau  (cùng bằng BC) nên là hình bình hành => MB = MC và MH = ME

Xét ∆AEH có AM và AN là hai đường trung tuyến nên giao điểm G của chúng là trọng tâm => EG = 2/3EN và AG = 2/3AM.Xét ∆ABC có AM là đường trung tuyến mà AG = 2/3AM nên G là trọng tâm của ∆ABCXét ∆EDF có EN là đường trung tuyến mà EG = 2/3EN nên G là trọng tâm của∆EDF

Vậy ∆ABC và ∆EDF có cùng trọng tâm G

Khách vãng lai đã xóa
Inequalities
27 tháng 9 2020 lúc 10:17

Dòng 12 là EN chứ ko pk AN nha, đánh nhầm

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 13:29

ΔABC cân tại A

⇒ phân giác AI đồng thời là trung tuyến

⇒ AI đi qua trọng tâm G của ΔABC

Vậy A, I, G thẳng hàng.

Nguyễn Lê Vy
Xem chi tiết
Nguyễn Lê Vy
Xem chi tiết