Cho C = \(1+2+2^2+2^3+......+2^{99}\)
Chứng minh rằng C + 1 là số có 31 chữ số
cho C=1+2+22+23+..............+299
chứng minh rằng C+1 là số có 31 chữ số
C = 1 + 2 +22 + .. +299
2C = 2 + 22 + 23 + ... + 2 100
=> 2C - C =( 2 + 22 + 23 + ... + 2 100) -( 1 + 2 +22 + .. +299 )
=> C = 2100 - 1
=> C+1 = 2100
Để chứng minh C+1 có 31 chữ số , ta chứng minh 1030< C+1 <1031
Ta có : C + 1 = 2100 = 230.270 = 230.12810
1030 = 230.530 = 230.12510
Vì : 128 > 125
=> 12810>12510
=>2100.12810>2100.12510
=>C+1 > 1030
Ta có: C+1 = 2100 = 231 . 269 = 231 . 263 . 26
= 231 . 5127. 43
10^31 = = 231 . 531= 2^31 . 5^28 . 5^3 = = 231 . 6257. 53
Vì : 512 <625 => 5127 < 6257
4 < 5 => 43 < 53
=>5127.43 < 6257.53
=>231.5127.43 < 231.6257.53
=> C+1 < 1031
Vì :C+1>1030
C+1 < 1031
=> 1030< C+1 <1031
=> C+1 có 31 chữ số
Cho A=1+2+2^2+2^3+...+2^99
Chứng minh rằng A+1 có 31 chữ số.
A = 1+2+2^2+2^3+2^4+...+2^99. Chứng minh rằng A+1 co 31 chữ số
A=1 +2 mũ 1 +2 mũ 2 +.................+ 2 mũ 99.chứng minh rằng A + 1 có 31 chữ số
1.Số a có s 31 chữ số 1 số b có 38 chữ số 1
Chứng minh rằng a . b - 2 chia hết cho 3
2.Cho Dãy số 1, 2 , 16 , 10 , 15 ......n(n+1)/2
Chứng minh rằng tổng của 2 số hạng liên tiếp của dãy số bao h cững là số chính phương
1) Cho C=1+2+2^2+2^3+...+2^99
Chứng minh rằng:C+1 là số có 31 chữ số.
2) Tìm số tự nhiên x để :3^x+2+3^x+1+3^x < 1053
3) Tìm số tự nhiên a nhỏ nhất biết a chia cho 120 dư 58 và a chia cho 135 dư 88
Giúp mình đi, làm đúng mình tick cho!
1, ĐỀ SAI EM NHÉ, PHẢI LÀ 32 CHỮ SỐ MÓI ĐÚNG
ta có: \(2C=2+2^2+2^3+...+2^{99}+2^{100}\)
=> \(C=2C-C=2^{100}-1\Rightarrow C+1=2^{100}=2.\left(2^3\right)^{33}=2.8^{33}\)
Vậy => \(2.10^{32}< 2.8^{33}< 2.10^{33}\)
=> C +1 có 32 chữ số
2, Có: \(3^{x+2}+3^{x+1}+3^x< 1053\Leftrightarrow3^x\left(3^2+3+1\right)< 1053\)
\(\Leftrightarrow13.3^x< 1053\Leftrightarrow3^x< 81=3^4\Leftrightarrow x< 4\)
Vậy x=1,2,3
3, Ta có: a= 135k +88= 120k+15k +88
Do a cia 120 dư 58 => 15k+88 dư 58 => 15k + 30 chia hết cho 120
Do a nhỏ nhất nên chọn k thỏa mãn: 15k+30=120 <=> k=
=> số a là: 135.6+88=898
1)
C = 1 + 2 + 22 + 23 + ... + 299
2C = 2 + 22 + 23 + 24 + ... + 2100
2C - C = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )
C = 2100 - 1
=> C + 1 = 2100 - 1 + 1 = 2100
ta có : 1030 < 2100 vì 1030 = ( 103 ) 10 = 100010 < 2100 = ( 210 ) 10 = 102410
lại có : 2100 = 231 . 269 = 231 . 263 . 26 = 231 . ( 29 ) 7 . 64 = 231 . 5127 . 64 = 231 . ( 5127 . 64 )
1031 = ( 2 . 5 ) 31 = 231 . 531 = 231 . 528 . 53 = 231 . ( 54 ) 7 . 125 = 231 . 6257 . 125 = 231 . ( 6257 . 125 )
Vì 5127 . 64 < 6257 .125 nên 231 . ( 5127 . 64 ) < 231 . ( 6257 . 125 ) hay 2100 < 1031
1030 là số bé nhất có 31 chữ số ; 1031 là số bé nhất có 32 chữ số
Mà 1030 < 2100 < 1031
=> 2100 là số có 31 chữ số
Vậy C + 1 là số có 31 chữ số
Cho M=1+2+2^2+...+2^99. Chứng tỏ rằng M+1 có 31 chữ số khi viết trong hệ thập phân
Bài 1 :
Tìm chữ số tận cùng của số A = 3n+2 - 2n+2 + 3n - 2n
Bài 2:
Chứng minh rằng : nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
Bài 3 : Cho C= 2+22 + 23 +......+ 299 + 2100
a) Chứng minh rằng C chia hết cho 31
b) Tìm x để 22x - 2 = C
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
1.Số a có 31 chữ số 1; số b có 38 chữ số 1 , Chứng minh rằng a . b - 2 chia hết cho 3
2.Cho Dãy số 1, 2 , 16 , 10 , 15 ......n(n+1)/2
Chứng minh rằng tổng của 2 số hạng liên tiếp của dãy số trên bao giờ cũng là số chính phương