cmr với mọi n là số tự nhiên ta có n.(n+2).(n+7) chia hết cho 3
cmr với mọi n là số tự nhiên ta có n.(n+2).(n+7) chia hết cho 3
n . ( n + 2 ) . ( n + 7 )
= n . n . n ( 2 + 7 )
= n3 ( 2 + 7 )
= n3 . 9
Vì n3 bắt buộc phải chia hết cho 3 và 9 chia hết cho 3
=> n . ( n + 2 ) . ( n + 7 ) sẽ chia hết cho 3 với mọi số tự nhiên
n.(n+2).(n+7)
=n.n.n.(2+7)
=n^3.(2+7)
=2^3.9
n^3 chia hết cho 3;9 nên n.(n+2).(2+7) xẽ chia hết cho 3 với mọi số tự nhiên
cmr với mọi n là số tự nhiên ta có n.(n+2).(n+7) chia hết cho 3
xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)
xét n=3k+1=>n+2=3k+3=3(k+1)
=>n(n+2)(n+7) chia hết cho 3(2)
xét n=3k+2=>n+7=3k+9=3(k+3)
=>n(n+2)(n+7) chia hết cho 3(3)
từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3
=>đpcm
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
CMR Với mọi số tự nhiên n , ta có : n(n+2)(n+13)chia hết 3
Mỗi số khi chia cho 3 thì xảy ra 1 trong 3 trường hợp sau:
n=3k;n=3k+1;n=3k+2 (k là số tự nhiên)
+ Nếu n= 3k thì=> n(n+2)(n+13) chia hết cho 3. (1)
+Nếu n=3k+1 => :n(n+2)(n+13)=(3k+1)(3k+1+2)(3k+1+13)
=(3k+1)(3k+3)(3k+14)
=(3k+1)(k+1)3(3k+14)
Vì 3 chia hết cho 3=>(3k+1)(k+1)3(3k+14) chia hết cho 3.
Hay n(n+2)(n+13) chia hết cho 3. (2)
+Nếu n=3k+2 =>n(n+2)(n+13)=(3k+2)(3k+2+2)(3k+2+13)
=(3k+2)(3k+4)(3k+15)
=(3k+2)(3k+4)(k+5)3
Vì 3 chia hết cho 3=>(3k+2)(3k+4)(k+5)3 chia hết cho 3.
Hay n(n+2)(n+13) chia hết cho 3. (3)
Từ (1),(2) và (3) => với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.
Vậy với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.
CMR: Với mọi số tự nhiên n ta luôn có: A=5^n(5^n + 1) - 6^n(3^n+2^n) chia hết cho 91; B=6^2n + 19^n - 2^n+1 chia hết cho 17
Bài 1 : CMR : 22...2(n chữ số 2) + 7n chia hết cho 9
Bài 2 : CMR với mọi số tự nhiên ta có:
a) (n.n + 2 ). (n + 7 )
b) 5n -1 chia hết cho 4
c) n^2 + n + 2 không chia hết cho 5
1) CMR với mọi số tự nhiên n ta có: 5*19^n+1 chia hết cho 3
Ta có: \(5.19^n+1\equiv2.1^n+1\equiv0\left(mod3\right)\)=> ĐPCM
Cmr với mọi số tự nhiên n : (n +4) (n +7) chia hết cho 2
Dùng phương pháp xét tính chẵn lẻ em nhé
Với n là số tự nhiên ta có: n + 7 - (n + 4) = 3 (là số lẻ)
Vậy n + 7 và n + 4 khác tính chẵn lẻ hay một trong hai số phải có một số là số chẵn và một số là số lẻ. Mà số chẵn thì luôn chia hết cho 2
Vậy (n +4).(n +7) ⋮ 2 ∀ n \(\in\) N
Bài 1: Khi chia số tự nhiên a cho 148 ta được số dư là 111. Hỏi a có chia hết cho 37 không ? Vì sao?
Bài 2: Chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 12) là số chia hết cho 2
Bài 3: Chứng minh rằng: ab ba + chia hết cho 11 Bài 7: Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
Bài 4: Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
Bài 5: Tìm số tự nhiên n để (3n + 4) chia hết cho n – 1.
giúp mình nha!!!=333
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)