Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Time Lord
Xem chi tiết
Time Lord
Xem chi tiết
Nguyen tien dung
Xem chi tiết
Đặng Phương Thảo
Xem chi tiết
Trần Thị Loan
15 tháng 8 2015 lúc 22:15

102 = 2.3.17

+) Chứng minh A chia hết cho 2

\(220^{119^{69}}=\left(....0\right)\)

\(69^{220}\) lẻ => \(119^{69^{220}}=\left(....9\right)\)

220119 tận cùng là 0 => kết qỉa là số chẵn => \(69^{220^{119}}=\left(....1\right)\)

=> A có tận cùng là chữ số 0 => A chia hết cho 2      (1)

+) A chia hết cho 3

220 đồng dư với 1 (mod 3) => \(220^{119^{69}}\) đồng dư với 1 mod 3

119 đồng dư với -1 mod 3 => \(119^{69^{220}}\) đồng dư với \(\left(-1\right)^{69^{220}}=-1\) (mod 3)

69 chia hết cho 3 nên \(69^{220^{119}}\) chia hết cho 3  hay \(69^{220^{119}}\) đồng dư với 0 (mod 3)

=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3      (2)

+) A chia hết cho 17

220 đồng dư với (-1) mod 3 =>  \(220^{119^{69}}\) đồng dư với \(\left(-1\right)^{119^{69}}=-1\) ( mod 3)

119 chia hết cho 17 nên \(119^{69^{220}}\) chia hết cho 17

69 đồng dư với 1 mod 17 => \(69^{220^{119}}\) đồng dư với 1 mod 17

=> A đồng dư với (-1) + 0 + 1 = 0 mod 17

=> A chia hết cho 17  (3)

Từ (1)(2)(3) => A chia hết cho 2.3.17 = 102

Tran Le Khanh Linh
25 tháng 5 2020 lúc 21:06

\(220\equiv0\left(mod2\right)\) nên \(220^{119^{69}}\equiv0\left(mod2\right)\)

\(119\equiv1\left(mod2\right)\) nên \(119^{69^{220}}\equiv1\left(mod2\right)\)

\(69\equiv-1\left(mod2\right)\)nên \(69^{220^{119}}\equiv-1\left(mod2\right)\)

Vậy \(A\equiv0\left(mod2\right)\)hay A chia hết cho 2

Tương tự: A chia hết cho 3; A chia hết cho 17

Vì 2,3,17 là các snt => A chia hết cho 102

Khách vãng lai đã xóa
Easylove
Xem chi tiết
Đặng Kiều Trang
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 8 2015 lúc 10:33

220 đồng dư với 2(mod 2)

=>\(220^{119^{69}}\)đồng dư với 0(mod 2)

119 đồng dư với 1(mod 2)

=>\(119^{69^{220}}\)đồng dư với 1(mod 2)

69 đồng dư với 1(mod 2)

=>\(69^{220^{119}}\)đồng dư với 1(mod 2)

=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2

220 đồng dư với 1(mod 3)

=>\(220^{119^{69}}\)đồng dư với 1(mod 3)

119 đồng dư với -1(mod 3)

=>\(119^{69^{220}}\)đồng dư với -1(mod 3)

69 đồng dư với 0(mod 3)

=>\(69^{220^{119}}\)đồng dư với 0(mod 3)

=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3

220 đồng dư với -1(mod 17)

=>\(220^{119^{69}}\)đồng dư với -1(mod 17)

119 đồng dư với 0(mod 17)

=>\(119^{69^{220}}\)đồng dư với 0(mod 17)

69 đồng dư với 1(mod 17)

=>\(69^{220^{119}}\)đồng dư với 1(mod 17)

=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17

vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102

=>đpcm

Tư Linh
Xem chi tiết
Phía sau một cô gái
28 tháng 7 2021 lúc 22:20

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

Nguyễn Ngọc Quý
Xem chi tiết
Cẩm Duyên
12 tháng 12 2015 lúc 11:29

Vào câu hỏi tương tự nha bạn 

Đặng Thùy Trâm
Xem chi tiết
soyeon_Tiểubàng giải
23 tháng 10 2016 lúc 10:42

Ta có:

\(220\equiv0\left(mod2\right)\Rightarrow220^{119^{60}}\equiv0\left(mod2\right)\)

\(119\equiv1\left(mod2\right)\Rightarrow119^{69^{220}}\equiv1\left(mod2\right)\)

\(69\equiv-1\left(mod2\right)\Rightarrow69^{220^{119}}\equiv-1\left(mod2\right)\)

Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{199}}\equiv0+1+\left(-1\right)\left(mod2\right)\)

hay \(A⋮2\left(1\right)\)

\(220\equiv1\left(mod3\right)\Rightarrow220^{119^{60}}\equiv1\left(mod3\right)\)

\(119\equiv-1\left(mod3\right)\Rightarrow119^{69^{220}}\equiv-1\left(mod3\right)\)

\(69\equiv0\left(mod3\right)\Rightarrow69^{220^{119}}\equiv0\left(mod3\right)\)

Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv1+\left(-1\right)+0\left(mod3\right)\)

hay \(A⋮3\left(2\right)\)

\(220\equiv-1\left(mod17\right)\Rightarrow220^{119^{60}}\equiv-1\left(mod17\right)\)

\(119\equiv0\left(mod17\right)\Rightarrow119^{69^{220}}\equiv0\left(mod17\right)\)

\(69\equiv1\left(mod17\right)\Rightarrow69^{220^{119}}\equiv1\left(mod17\right)\)

Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv-1+0+1\left(mod17\right)\)

hay \(A⋮17\left(3\right)\)

Từ (1); (2); (3), do 2; 3; 17 nguyên tố cùng nhau từng đội một nên

\(A⋮2.3.17=102\left(đpcm\right)\)