TÌM X THUỘC Z ĐỂ CÁC PHÂN THỨC SAU CÓ GIÁ TRỊ NGUYÊN
A) (X2-2X+3)/(X-3)
B) (X2-3X+6)/(2X-3)
tìm điều kiện của x để phân thức sau có giá trị nguyên
a. C= \(\dfrac{3x^3+7x^2+5-1}{x^2+2x+1}\)
b. D= \(\dfrac{x^4+x^3+x^2+x-29}{x^2+1}\)
a: Để C là số nguyên thì \(3x^3+6x^2+3x+x^2+2x+1-2⋮x^2+2x+1\)
=>\(x^2+2x+1\in\left\{1;-1;2;-2\right\}\)
=>(x+1)^2=1 hoặc (x+1)^2=2
=>\(x\in\left\{0;-2;\sqrt{2}-1;-\sqrt{2}-1\right\}\)
b: Để D là số nguyên thì \(x^4+x^2+x^3+x-29⋮x^2+1\)
=>\(x^2+1\in\left\{1;-1;29;-29\right\}\)
=>x^2+1=1 hoặc x^2+1=29
=>\(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)
tìm các giá trị của x để các biểu thức sau nhận giá trị âm
a) x2+5x
b) 3(2x+3) (3x-5)
bài 2. tìm các giá trị của x để biểu thức sau nhận giá trị dương
a)2y2-4y
b) 5(3y+1) (4y-3)
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
Bài 2:
a: \(2y^2-4y>0\)
\(\Leftrightarrow y\left(y-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}y>2\\y< 0\end{matrix}\right.\)
b: \(5\left(3y+1\right)\left(4y-3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}y>\dfrac{3}{4}\\y< -\dfrac{1}{3}\end{matrix}\right.\)
Bài 1: Thực hiện phép tính
a) A= x2/(y+1)2:2x/y+1:2x/y+1
b) B= x2/(y+1)2;(2x/y+1:2x/y+1)
Bài 3: Cho biểu thức P= x2+2x/2x+12+54-3x/x2+6x-6/x+1
a) Tìm điều kiện xác định của x để giá trị của biểu thức đước xạc định
b) Rút gọn phân thức
c) Tìm giá trị của x để: P=3/2
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)
Cho phân thức: F(x)=$\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}$x4+x3−x2−2x−2x4+2x3−x2−4x−2 (x$\in Z$∈Z)
a/ Rút gọn phân thức
b/Xác định giá trị của x để phân thức có giá trị nhỏ nhất
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
B = (3 - x)( x 2 + 3x + 9) - ( x + 2 ) 3 + 2(x + 2)(4 - 2x + x 2 ) + 6x(x + 2)
Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của x:
a) A = 3 ( x – 1 ) 2 – ( x + 1 ) 2 + 2(x – 3)(x + 3) – ( 2 x + 3 ) 2 – (5 – 20x);
b) B = - x ( x + 2 ) 2 + ( 2 x + 1 ) 2 + (x + 3)( x 2 – 3x + 9) – 1.
Tìm x thuộc Z , để phân thức sau có giá trị nguyên :
\(\frac{2x^2+3x+3}{2x-1}\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x :
a) A=(x+6)2+2(x-5)2-(x+2)2-2(x-3)2
b) B=(x-2)(x2+2x+4)-(x+2)(x2-2x+4)
c) C=x4+2x2-(x2-2x+3)(x2+2x+3)
Lời giải:
a.
$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$
$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$
$=4(2x+8)+2(-2)(2x-8)$
$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$
b.
$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$
c.
$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$
$=x^4+2x^2-(x^4+6x^2-4x^2)$
$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$
a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)
\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)
\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)
\(=34\)
b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-8-x^3-8\)
=-16
c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)
\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)
\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)
\(=-9\)