CMR : ( n +4 ) ( n +5 ) chia hết cho 2
CMR : ƯCLN ( 2n+1,2n+3) = 1
Chứng minh rằng :
a) ƯCLN(4n+1, 5n +1) = 1
b)ƯCLN(2n+1,2n+3) = 1
c)n.(n+5) chia hết cho 2 với n thuộc N
d)(n+3).(n+7).(n+8) chia hết cho 3 với n thuộc N
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
chứng minh rằng
a)ƯCLN(4n+1,5n+1)=1 ; b)ƯCLN(2n+1,2n+3)=1
c)n.(n+5) chia hết cho 2 với mọi n thuộc N ; (n+3).(n+7).(n+8) chia hết cho 3 với mọi n thuộc N
a) ƯCLN(4n+1; 5n+1) = 1
Gọi UCLN(4n+1; 5n+1) = d
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}5.\left(4n+1\right)⋮d\\4.\left(5n+1\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}20n+5⋮d\\20n+4⋮d\end{cases}}\)
\(\Rightarrow\left(20n+5\right)-\left(20n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1;5n+1\right)=1\)
b) UCLN(2n+1;2n+3) =1
Gọi UCLN(2n+1; 2n+3) = d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)
Nếu d = 2 thì \(2n⋮2\)
Nhưng 3 không chia hết cho 2, Vậy k thoả màn điều kiện chia hết cho d
Nếu d = 1 => Thoả mãn điều kiện chia hết
=> UCLN(2n+1; 2n+3) = 1
c) n.(n+5) chia hết cho 2 vs mọi n thuộc N
Th1: n là số chẵn
=> n + 5 là số lẻ
=> chẵn . lẻ = chẵn chia hết cho 2
Th2: n là số lẻ
=> n + 5 là số chẵn
=> chẵn . lẻ = chẵn chia hết cho 2
Vậy vs mọi n thuộc N, n(n + 5) chia hết cho 2
THANKS!!!!!!!!!!!!!!!!!!!!!!!
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
Sử Dụng phương pháp qui nạp để giải:
1)CMR:9^2n+14 chia hết cho 5.
2)CMR:16^n-15n-1 chia hết cho 225.
3)CMR:4^n+15n-1 chia hết cho 9.
4)CMR:1+2+...+n=n(n+1)/2
5)CMR:11^n+1+12^2n-1 chia hêts cho 133
Ai xong nhanh nhất , chi tiết nhất tự biết rồi đấy!
Mình sẽ tích cho
CMR: Với mọi n thuộc Z, ta có:
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)6 \(\forall\)x \(\in\)Z
b) (n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)5 \(\forall\)x \(\in\)Z
c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)2 \(\forall\)x \(\in\)Z
d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)x \(\in\)Z
CMR
a) \(6^{2n}+3^{n+2}+3^n\)chia hết cho 11
b)\(5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}\)chia hết cho 19
c)\(4^{2n}-3^{2n}-7\)chia hết cho 168
d)\(3^{2^{2n+1}}+2^{3^{4n+1}}+5\)chia hết cho 22
1.Cho P=5n.(5n+1-1)+42n+1.(4n-1)+5n+42n+1,neN . Cmr: P chia hết cho 3