Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Học 24
Xem chi tiết
nguyen thi thanh loan
Xem chi tiết
tth_new
13 tháng 2 2018 lúc 8:46

Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)

        \(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

Ta có hai tổng A và B mới để so sánh:

\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

 Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V

thiện lê quốc
Xem chi tiết
nguyenthivananh
18 tháng 5 2019 lúc 9:24

Ta có:2015/2016>2015/2016+2017+2018

2016/2017>2016/2016+2017+2018

2017/2018>2017/2016+2017+2018-Mình áp dụng so sánh phân số cùng tử đấy.

Suy ra2015/2016+2016/2017+2017/2018>(2015+2016+2017)/(2016+2017+2018)=B

Nguyen Ngoc Tram
Xem chi tiết
Nguyễn Ngọc Quỳnh Như
22 tháng 4 2017 lúc 21:40

A>B

Vì 2017>2016

Nhớ k mình nha

Lưu Như Ý
Xem chi tiết
Phan Thanh Tịnh
24 tháng 4 2017 lúc 19:49

Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016

Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017

=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)

2016D = 2016 + 20162 + 20163 + ... + 20162017

=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)

\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)

Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)

= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015

= 20172017.20162017 - 20172017.2016 + 20162017.2015

= 20172017.(20162017 - 2016) + 20162017.2015 > 0

=> A > B

Nguyễn Tuấn Minh
24 tháng 4 2017 lúc 19:46

Ta có 

\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)

\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)

\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)

\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)

Có 20172017>20162017 ;  20172016>20162016 ;  20172015>20162015;..... ; 2017>2016

=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)

=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)

=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)

Thiên An
24 tháng 4 2017 lúc 19:58

Xét biểu thức  \(N=1+k+k^2+k^3+...+k^n\) (1) với k là số tự nhiên lớn hơn 1

Ta có \(k.N=k+k^2+k^3+k^4+...+k^{n+1}\) (2)

Lấy (2) - (1) ta được:

\(\left(k-1\right)N=\left(k+k^2+k^3+k^4+...+k^{n+1}\right)-\left(1+k+k^2+k^3+...+k^n\right)=k^{n+1}-1\)

Suy ra  \(N=\frac{k^{n+1}-1}{k-1}\) 

Áp dụng với k = 2017; n = 2016 ta được \(1+2017+2017^2+...+2017^{2016}=\frac{2017^{2017}-1}{2016}\)

Áp dụng với k = 2016; n = 2016 ta được \(1+2016+2016^2+...+2016^{2016}=\frac{2016^{2017}-1}{2015}\)

\(A=\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2016.2017^{2017}}{2017^{2017}-1}>1\) 

Tương tự  \(B=\frac{2015.2016^{2017}}{2016^{2017}-1}>1\)

Mặt khác: Tử số A > tử số B; mẫu A > mẫu B => A < B.

Thu Uyen Nguyen
Xem chi tiết
Trần Mỹ Linh
Xem chi tiết
Trần Hương Giang
Xem chi tiết