x + 3 x 7 = 56
x - 7 x 3 = 85
1)(x-90)(x-35)(x+18)(x+7)=-1080 x^2
2)(6x+1)(2x+6)(4x-3)(3x-2)=56x^2
3)(x^2+7x+12)(x^2-15x+56)=180
x2-56x + 49 với x = 7/4
Sửa đề: \(16x^2-56x+49=\left(4x-7\right)^2=\left(4\cdot\dfrac{7}{4}-7\right)^2=0^2=0\)
1. 8/11 + 8/33 x 3/4
7/9 x 3/14 : 5/8
5/12 - 7/32 : 21/16
1.\(\dfrac{8}{11}+\dfrac{8}{33}\times\dfrac{3}{4}=\dfrac{8}{11}+\dfrac{8\times3}{33\times4}=\dfrac{8\times12}{11\times12}+\dfrac{8\times3}{33\times4}=\dfrac{8\times15}{132}=\dfrac{120}{132}=\dfrac{10}{11}\)
2.\(\dfrac{7}{9}\times\dfrac{3}{14}:\dfrac{5}{8}=\dfrac{7}{9}\times\dfrac{3}{14}\times\dfrac{8}{5}=\dfrac{4}{15}\)
3.\(\dfrac{5}{12}-\dfrac{7}{32}:\dfrac{21}{16}=\dfrac{5}{12}-\dfrac{7}{32}\times\dfrac{16}{21}=\dfrac{5}{12}-\dfrac{1}{6}=\dfrac{5-2}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)
`@V.Tr.V`
`8/11+8/33xx3/4=8/11+2/11=10/11`
`7/9xx3/14:5/8=7/9xx3/14xx8/5=[7xx3xx4xx2]/[3xx3xx7xx2xx5]=4/[3xx5]=4/15`
`5/12-7/32:21/16=5/12-7/32xx16/21=5/12-2/12=3/12=1/4`
8/11 + 8/33 x 3/4 = 8/11 + 2/11 = 10/11
7/9 x 3/14 : 5/8 = 1/6 : 5/8 = 4/15
5/12 - 7/32 : 21/16 = 5/12 - 1/6 = 1/4
x/3=y/5=z/7 và x+2z=85
ADTCDTSBN ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+2z}{3+14}=\dfrac{85}{17}=5\\ \dfrac{x}{3}=5\Rightarrow x=15\\ \dfrac{y}{5}=5\Rightarrow y=25\\ \dfrac{z}{7}=5\Rightarrow z=35\)
Vậy x=15;y=25;z=35
Giải các phương trình sau
1)\(\dfrac{x+1}{85}+\dfrac{x+3}{83}=\dfrac{x+5}{81}+\dfrac{x+7}{79}\)
2)\(\dfrac{x-1}{2015}-\dfrac{x+3}{2011}=\dfrac{x+7}{2007}-\dfrac{x+11}{2003}\)
3)\(\dfrac{x+4}{4}-\dfrac{x-3}{6}=\dfrac{x}{3}\)
4)\(x-\dfrac{x+1}{3}=\dfrac{2x+1}{5}\)
5) \(\dfrac{2x-7}{5}+\dfrac{x+11}{2}=-4\)
giúp em vs ạ, em đang cần gấpem c.ơn trước ạ
1: \(\Leftrightarrow\left(\dfrac{x+1}{85}+1\right)+\left(\dfrac{x+3}{83}+1\right)=\left(\dfrac{x+5}{81}+1\right)+\left(\dfrac{x+7}{79}+1\right)\)
=>x+86=0
=>x=-86
2: \(\Leftrightarrow\left(\dfrac{x-1}{2015}+1\right)-\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+7}{2007}+1\right)-\left(\dfrac{x+11}{2003}+1\right)\)
=>x+2014=0
=>x=-2014
3: \(\Leftrightarrow3\left(x+4\right)-2\left(x-3\right)=4x\)
=>4x=3x+12-2x+6
=>4x=x+18
=>3x=18
=>x=6
4: \(\Leftrightarrow15x-5\left(x+1\right)=3\left(2x+1\right)\)
=>15x-5x-5=6x+3
=>10x-5=6x+3
=>4x=8
=>x=2
5: \(\Leftrightarrow2\left(2x-7\right)+5\left(x+11\right)=-40\)
=>4x-14+5x+55=-40
=>9x+41=-40
=>x=-9
bài 1: tìm x biết :
a) -35-x= -52 b) x+35=-18 c) 15-x=7-(-2) d) x-35=-12-3 e) | x-5 | =7 f) 18-| 2-x |=6
bài 2 tính :
a) ( -85)+10 -(-85)-50 b) -(-85)-(-71)+15+(-85) c) -(-30)-37+37+(-85) d) 71-(-30)-18+(-30)
bài 3: A=1.99+2.98+3.97+...............+98.2+99.1
giai pt
a) \(\sqrt{1+\sqrt{1-x^2}.}[\sqrt{\left(1-x\right)^3}-\sqrt{\left(1+x\right)^3}]=2+\sqrt{1-x^2}\)
b) \(\sqrt{1-x}-2x\sqrt{1-x^2}-2x^2+1=0\)
c) \(64x^6-112x^4+56x^2-7=2\sqrt{1-x^2}\)
a/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:
\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)
Theo Viet đảo, \(a^2;b^2\) là nghiệm của:
\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(
b/ Đặt \(x=cos2t\) pt trở thành:
\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)
\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)
\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)
\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)
\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)
\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)
c/ Đặt \(x=cost\)
\(64cos^6t-112cos^4t+56cos^2t-7=2\sqrt{1-cos^2t}\)
\(\Leftrightarrow64cos^6t-112cos^4t+56cos^2t-7=2sint\)
Nhận thấy \(cost=0\) không phải nghiệm, pt tương đương:
\(64cos^7t-112cos^5t+56cos^3t-7cost=2sint.cost\)
\(\Leftrightarrow cos7t=sin2t=cos\left(\frac{\pi}{2}-2t\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7t=\frac{\pi}{2}-2t+k2\pi\\7t=2t-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{18}+\frac{k2\pi}{9}\\t=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=cos\left(\frac{\pi}{18}+\frac{k2\pi}{9}\right)\\x=\left(-\frac{\pi}{10}+\frac{k2\pi}{5}\right)\end{matrix}\right.\)
Ý tưởng của người ra đề khá kì quặc, công thức \(cos7a\) kia thực sự là chứng minh rất mất thời gian
Tìm số nguyên x biết :
1)x-43=(35-x)-48
2)-(x-6+85)=(x+51)-54
3)|-7-(x+3)|=3
\(x-43=35-x-48\)
\(x+x=43+35-48=30\)
2.x=30=> x=15
2) -x+6-85=x+51-54
-x-79=x-3
2x=76=> x=38
3)\(\orbr{\begin{cases}-7-x-3=-3\Rightarrow x=-7\\-7-x-3=3\Rightarrow x=-13\end{cases}}\)
giúp tôi giải tính nhanh (85+3) x 8 x ( 2 x 12 - 2 x 7 - 2 x5)