cho x/y = y/z = z/x và x + y +z khác 0 tính B = x^600.y^301/z^901
CHO x,y,z khác 0 và (x-y-z)/x = (y-z-x)/y = (z-y-x)/z.
Tính (1+y/x)(1+z/y)(1+x/z)
Áp dụng tính chất dãy tie số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{y-z-x}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-z-x+z-x-y}{x+y+z}=-\frac{\left(x+y+z\right)}{x+y+z}=-1\)
\(\Rightarrow\hept{\begin{cases}x-y-z=-x\\y-z-x=-y\\z-y-x=-z\end{cases}\Rightarrow\hept{\begin{cases}y+z=-2x\\z+x=-2y\\x+y=-2z\end{cases}}}\)
\(\Rightarrow\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{\left(x+y\right)}{x}.\frac{\left(y+z\right)}{y}.\frac{\left(z+x\right)}{z}=-\frac{8xyz}{xyz}=-8\)
Cho x,y,z khác 0 và x-y-z=0. Tính A= (1-z/x).(1-x/y).(1+y/z)
x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-zyx)/(xyz)
B=-1
Cho x,y,z thỏa mãn x,y,z khác 0 và x+y+z=0. Tính
S=1/x^2+y^2-z^2+1/y^2+z^2-x^2+1/z^2+x^2-y^2
\(x+y+z=0\)
⇔\(-x=y+z\)
⇔\(x^2=\left(y+z\right)^2\)
⇔\(x^2=y^2+2yz+z^2\)
⇔\(y^2+z^2-x^2=-2yz\)
Tương tự:
\(z^2+x^2-y^2=-2zx\)
\(x^2+y^2-z^2=-2xy\)
➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\)
Vậy S = 0
Cho x,y,z thỏa mãn: x,y,z khác 0 và x+y+z=0. Tính:
S=1/x^2+y^2-z^2 + 1/y^2+z^2-x^2 + 1/z^2+x^2-y^2
Ta có:
\(x+y+z=0\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)
Vậy S=0
Cho x, y, z khác 0 và x- y- z= 0.Tính giá trị
B = \(\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
ta có : x - y - z = 0 => \(\hept{\begin{cases}x=y+z\\y=x-z\\z=x-y\end{cases}}\) => \(\hept{\begin{cases}x=y+z\\y=x-z\\-z=y-x\end{cases}}\)
B=\(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)=\(\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{z+y}{z}\right)\)=\(\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)= -1
x-y-z=0 ta có x-z=y,y-x=-z,y+z=x
1-z/x=(x-z)/x; 1-x/y=(y-x)/y; 1+y/z=(z+y)/z
thay vào được: y/x.-z/y.x/z=-1
cho x,y,z khác 0 thỏa mãn 1/x + 1/y +1/z =2 và 2/xy - 1/z^2=4
tính D=(x+2y+z)^2018
C/m neu a(y+z)=b(z+x)=c(x+y) [a khác b khác c và khác 0] thì
y-z/a(b-c)=z-x/b(c-a)=a)=x-y/c(a-b)
Cho x,y,z #0 và x+y-z =-2 và 1/x+1/y-1/z =0
Tính x^2+y^2+z^2
1/x+1/y-1/z=(yz+xz-xy)/(xyz)=0 vì x,y,z#0 =>yz+xz-xy=0
x^2 + y^2 +z^2=(x+y-z)^2 +2(xz+yz-xy)=4
Các cậu giúp mình nhé, mình sắp thi huyện rồi :
Câu 1 : Giá trị nhỏ nhất của biểu thức :
A = -x ^ 2 - 2x - 5 / x ^ 2 + 2x +2 là
Câu 2 : Cho x,y,z khác 0 và x - y - z = 0
Tính giá trị biểu thức :
B = ( 1 - z / x ) ( 1 - x/y) ( 1 + y/2 )
Câu 2 : Tìm x,y,z biết :
x - 1 / 2 = y- 2 / 3 = z - 3 /4 và 2x + 3y -z =50
Câu 3 : Tìm x,y biết :
x / y ^2 = 3 và x/ y =27