5a+3b....24+ab
Cho a/b=c/d.Chứng minh
a, 5a+3b/5c+3d=5a-3b/5c-3b
b,(a-b)^2/(c-d)^2=ab/cd
c,a^3-b^3/c^3-d^3=(a+b/c+d)^3
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tìm 2 số a , b biết :
4a + 3b = 40 ; 5a - 3b = 5
5a + 3b = 40 ; 8a - b = 6
5a + 2b = 30 ; 5a - 3b = 5
Tìm các số nguyên a,b biết: 5a+3b-ab=40
1) So sánh :
a) \(3^{2^3}\) và (32)3 b) (-8)9 và (-32)5 c) 221 và 314
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng :
a)\(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\) b) \(\dfrac{ab}{cd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!
\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)
\(a,\) Áp dụng tcdtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)
Tìm các số nguyên a, b sao cho ab-3b=4b-5a
( 5a-3b) ( 5a + 3b)
\(\left(5a-3b\right)\left(5a+3b\right)\)
\(=5a\left(5a+3b\right)-3b\left(5a+3b\right)\)
\(=25a^2+15ab-15ab-9b^2\)
\(=25a^2-9b^2\)
Cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh:
a,\(\dfrac{ab}{cd}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
b,\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
c,\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)
Vậy...
b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)
Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(ad=bc\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
(theo tính chất dãy tỉ số bằng nhau)
=> (đpcm)
b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\) => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)
=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)
#Ayumu
. Help Me ! Please :)) Mik đang gấp lắm nhé nên nếu các bạn biết thì giải giúp mik nhé :3 Cảm ơn nhiều nhiều lắm nek ~~~ Bạn nào làm đúng mik sẽ tik nhé =))
Đề bài: Cho a/b = c/d . C/minh rằng
a) 5a-3b/5a+3b = 5c-3d/5c+3d
b) 5a+11b/6a-5b = 5c + 11d/6c-5d
c) 2a^2 - 3b^2/2c^2 - 3d^2 = ab/cd
c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3
Cảm ơn pn Bexiu ^^ Nhưng đây là c/m mà bn ;) ;) Có phải tính đâu =)) Nhưng ko sao ah :3 Cảm ơn pn đã giúp <3
tìm a;b thuộc Z biết ab - 3b = 4b - 5a ( b > 3 )