So sánh :
S = 1.20 + 2.21 + 3.24 + ..... + 2017.22016 và 2016.22017
Tính :
\(B=\dfrac{\dfrac{1}{1.2001}+\dfrac{1}{2.2002}+\dfrac{1}{3.2003}+...+\dfrac{1}{19.2019}}{\dfrac{1}{1.20}+\dfrac{1}{2.21}+\dfrac{1}{3.22}+....+\dfrac{1}{2000.2019}}\)
SO SÁNH 2^30 +3^30+4^30 và 3.24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
Ta có: 4^30=2^30.2^30=2^30.4^15
3.24^10=3.(3.2^3)^10=2^30.3^11
Ta thấy: 3^11<3^15<4^15 => 4^15>3^11
Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11
=>2^30+3^30+4^30>3.24^10
so sánh:3^300+3^300 và 3.24^100
So sánh 3.24^100 và 3^300 + 4^300
\(3.24^{100}=3.3^{100}.8^{100}=3^{101}.\left(2^3\right)^{100}=3^{101}.2^{3.100}=3^{101}.2^{300}\)
\(4^{300}=2^{300}.2^{300}=2^{2.150}.2^{300}=\left(2^2\right)^{150}.2^{300}=4^{150}.2^{300}\)
Vì\(3^{101}.2^{300}< 4^{150}.2^{300}\)nên \(3.24^{100}< 4^{300}\Rightarrow3.24^{100}< 3^{300}+4^{300}\)
so sánh a, 3.24^100 và 3^100+4^300
2
So sánh
2^30 +2^30 +2^40 và 3.24 ^10
230+230+240 và 3x2410
230+230+240=230(1+1+210)=230(2+210)
3x2410=3x(23)10x310=311x230
Vì 230(2+210)<230x311 nên 230+230+240<3x2410.
so sánh: 2^30+3^30+4^30 và 3.24^10
\(3\times24^{10}\)
\(=3\times\left(2^3\times3\right)^{10}\)
\(=3\times3^{10}\times\left(2^3\right)^{10}\)
\(=3^{11}\times2^{30}\)
\(=3^{11}\times\left(2^2\right)^{15}\)
\(=3^{11}\times4^{15}\)
Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)
Nên \(3^{11}\times4^{15}\)< \(4^{15}\times4^{15}=4^{30}\)
Do đó : \(3\times24^{10}\)< \(4^{30}\)
Vậy \(2^{30}+3^{30}+4^{30}\)> \(3\times24^{10}\)
So sánh:2^30+3^30+4^30 và 3.24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
So sánh : 2^30 + 3^30 + 4^30 và 3.24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
so sánh 3.24100 và 4300