Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đình Đức
Xem chi tiết
Edogawa Conan
Xem chi tiết
Trần Mạnh
25 tháng 2 2021 lúc 21:42

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813

hoanghongnhung
Xem chi tiết
liên hoàng
Xem chi tiết
Soái muội
Xem chi tiết
Cao Quân Bảo
Xem chi tiết
Akai Haruma
11 tháng 11 2023 lúc 16:02

Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$

$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$

$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$

$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$

Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$

Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$

$\Rightarrow x-y-6=y-1=0$

$\Rightarrow y=1; x=7$

$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$

$=2021-8=2013$

Vũ Ngọc Mai
Xem chi tiết
Nguyễn Tiến Minh
23 tháng 12 2016 lúc 20:39

h mk di minh tra loi noi that

Đinh Trần Thu Hương
24 tháng 12 2016 lúc 22:44

đặt t=x+y

x^2 +2xy+6x+6y+2y^2+8=0

x^2+2xy+y^2+6(x+y)+8= -y^2

(x+y)^2 + 6(x+y)+8 = -y^2

t^2 +6t +8= -y^2

(t+2)(t+4) = -y^2

do y^2 >=0 với mọi y

-y^2 <=0 với mọi y

t^2+6t+8<=0

(t+2)(t+4)<=0

* Trường hợp 1:   t+2<=0 và t+4>=0        (1)

t<=-2 và t>=4

* trường hợp 2:  t+2>=0 và t+4<=0           (2)

t>= -2 và t<= -4   ( vô nghiệm)

 Từ (1), (2) ta có:

-4<= t <=-2 

-4 <= x+y <= -2

-4 + 2016 <= x+y+ 2016 <= -2 +2016

2012 <= x+y +2016 <= 2014

Bmin= 2012

Bmax= 2014

 *Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0

thì x=-4 và y=0

* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0

thì x=-2 và y=0

vậy Bmin= 2012 khi (x,y) = (-4, 0)

Bmax= 2014 khi (x,y)= (-2,0)

Trần Đức Thắng
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa