Ta có: \(2x=3y=5z\)và \(x+y-z=57\)
Giá trị của \(x^2-y^2-z^2\)
biết 2x=3y=5z và x+y-z=57. giá trị của biểu thức A=x^2-y^2+z^2 là
Ta có:
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{57}{\frac{19}{30}}=90\)
\(\Rightarrow x=45\)
\(\Rightarrow y=30\)
\(\Rightarrow z=18\)
Vậy............................
\(\Rightarrow x^2-y^2+z^2=45^2-30^2+18^2=1449\)
Cho tam giác ABC đều có đường cao ah là đường cao của tam giác ABC, hd là tia phân giác của góc ahc, d thuộc ac. khi đó, góc hdc =
biết 2x=3y=5z và x+y+z=57. giá trị của biểu thức A=x2-y2+z2=??
Biết 2x = 3y = 5z và x + y - z = 57
Giá trị của biểu thức A = x2 - y2 + z2 là ___
Ta có 2x=3y=5z
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
và x+y-z=57
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{57}{19}=3\)
Vì \(\frac{x}{15}=3\Rightarrow x=45\)
Vì \(\frac{y}{10}=3\Rightarrow y=30\)
Vì \(\frac{z}{6}=3\Rightarrow z=18\)
Vậy x=45 y=30 z=18
Ta có \(A=x^2-y^2+z^2=45^2-30^2+18^2=1449\)
Gọi x;y;x lần lượt tỉ lệ với 2;3;5 và x+y-z=57
Ta có: 2x = 3y = 5z
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\Rightarrow\frac{x+y-z}{15+10-6}=\frac{57}{19}=3\)
\(\Rightarrow\frac{x}{15}=3\Rightarrow x=45\)
\(\Rightarrow\frac{y}{10}=3\Rightarrow y=30\)
\(\Rightarrow\frac{z}{6}=3\Rightarrow z=18\)
Vậy x,y,z lần lượt là 45,30,18
Gía trị của biểu thức A = x2-y2+z2 là
A= 452-302+182
A= 1449
VẬY..........
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Tìm x,y,z biết:
2x=3y=5z và giá trị tuyệt đối của x+y+z = 95
\(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
\(\left|x+y+z\right|=95\Rightarrow x+y+z=\pm95\)
Xét \(x+y+z=95\) ta áp dụng tc dãy tí số bằng nhau:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{95}{31}\)
\(\Rightarrow\begin{cases}\frac{x}{15}=\frac{95}{31}\Rightarrow x=\frac{95\cdot15}{31}=\frac{1425}{31}\\\frac{y}{10}=\frac{95}{31}\Rightarrow y=\frac{95\cdot10}{31}=\frac{950}{31}\\\frac{z}{6}=\frac{95}{31}\Rightarrow z=\frac{95\cdot6}{31}=\frac{570}{31}\end{cases}\)
Xét \(x+y+z=-95\) ta áp dụng tc dãy tí số bằng nhau:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-95}{31}\)
\(\Rightarrow\begin{cases}\frac{x}{15}=-\frac{95}{31}\Rightarrow x=\frac{95\cdot15}{31}=-\frac{1425}{31}\\\frac{y}{10}=-\frac{95}{31}\Rightarrow y=\frac{95\cdot10}{31}=-\frac{950}{31}\\\frac{z}{6}=-\frac{95}{31}\Rightarrow z=\frac{95\cdot6}{31}=-\frac{570}{31}\end{cases}\)
Giúp với:
Biết rằng x/y/z và 2x -3y + 5z khác 0. Hãy tính giá trị của biểu thức: (2x + 3y - 5z)/(2x - 3y + 5z)
cho x,y,z=5:4:3 và 2x-3y+5z khác 0. Tính giá trị A=2x+3y-5z/2x-3y+5z
a, x/5=y/3 và 5x-3y=8
b, x/3=y/4 ; y/5 = z/7 va 2x+ 3y-z=124
c, 3x=2y ; 7y=5z va x-y+z=32
đ, 2x/3=3y/4=4z/5 và x+y+z=49
e, 2x=3y=5z va x+y-z=95
f, x-1/2=y-2/3=z-3/4 va 2x+3y-z=50
Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)
ap dung tinh chat day ti so = nhau nhoaaaaaaaaaaaaaaaa
tk mk nhe
cho x/-4 = y/7 = z/3 tính giá trị biểu thức: A= -2x + y + 5z/ 2x - 3y - 6z
( với x, y, z khác 0 và 2x - 3y - 6z khác 0 )