\(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
\(\left|x+y+z\right|=95\Rightarrow x+y+z=\pm95\)
Xét \(x+y+z=95\) ta áp dụng tc dãy tí số bằng nhau:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{95}{31}\)
\(\Rightarrow\begin{cases}\frac{x}{15}=\frac{95}{31}\Rightarrow x=\frac{95\cdot15}{31}=\frac{1425}{31}\\\frac{y}{10}=\frac{95}{31}\Rightarrow y=\frac{95\cdot10}{31}=\frac{950}{31}\\\frac{z}{6}=\frac{95}{31}\Rightarrow z=\frac{95\cdot6}{31}=\frac{570}{31}\end{cases}\)
Xét \(x+y+z=-95\) ta áp dụng tc dãy tí số bằng nhau:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-95}{31}\)
\(\Rightarrow\begin{cases}\frac{x}{15}=-\frac{95}{31}\Rightarrow x=\frac{95\cdot15}{31}=-\frac{1425}{31}\\\frac{y}{10}=-\frac{95}{31}\Rightarrow y=\frac{95\cdot10}{31}=-\frac{950}{31}\\\frac{z}{6}=-\frac{95}{31}\Rightarrow z=\frac{95\cdot6}{31}=-\frac{570}{31}\end{cases}\)