Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Bảo Minh
Xem chi tiết
Đăng Nguyễn Hải
21 tháng 12 2023 lúc 21:27

 => 2A =2 + 22 + 23 + ... + 22020

 => 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)

=> A =22020-1

=> A+1 =22020

Vậy A + 1 là một số chính phương

nguyenhien
Xem chi tiết
Nguyễn Tiến Dũng
3 tháng 5 2017 lúc 8:48

ta có :

1/2=1/40+1/40+....+1/40 (20 số hạng)

1/21+1/22+1/23....+1/40(có 20 số hạng)

vì 1/21>1/40

1/22>1/40

..........

1/39>1/40

1/40=1/40

=>A<1/2

A<1 chịu

le bao truc
3 tháng 5 2017 lúc 9:25

Ta có

\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)

Mà số phần từ của A là 20

\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)

Còn chứng minh bé hơn 1 thì tương tự bạn nhé!

Bùi Thu Trang
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:07

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

Akai Haruma
31 tháng 12 2023 lúc 14:09

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

Akai Haruma
31 tháng 12 2023 lúc 14:09

3/
$C=1+2+2^2+2^3+...+2^{99}$

$2C=2+2^2+2^3+2^4+...+2^{100}$

$\Rightarrow 2C-C=2^{100}-1$

$\Rightarrow C=2^{100}-1$

nguyen quynh trang
Xem chi tiết
Khang Đỗ
Xem chi tiết
Dương Thị Huyền
Xem chi tiết
OoO Kún Chảnh OoO
21 tháng 8 2015 lúc 13:33

ở trong dòng chữ xanh ý!

lyli
Xem chi tiết
VKOOK_BTS
21 tháng 4 2018 lúc 17:26

1/2=1/40+1/40+...+1/40 có 20 số hạng

1/21+1/22+...+1/40 có 20 số hạng

1/21>1/40

....

1/40=1/40=> 1/2<1/21+1/22+...+1/40

1=1/40+...+1/40 có 40 số hạng mà A chỉ có 20 số hạng

=>1/2<A<1

lyli
21 tháng 4 2018 lúc 17:15

giúp mk dy , giúp mk dy mak huhu mk dag cần gấp !!!!!

Nguyễn Hưng Phát
21 tháng 4 2018 lúc 17:29

\(A=\frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{20}{40}=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+......+\frac{1}{40}< \frac{1}{21}+\frac{1}{21}+......+\frac{1}{21}=\frac{20}{21}< 1\)

Vậy \(\frac{1}{2}< A< 1\)

Nguyễn Thị Diệu Ly
Xem chi tiết
Hoàng Minh Hiếu
21 tháng 4 2021 lúc 21:53

ta có   A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40  > 1/40 + 1/40 +....+ 1/40 ( có 20 số hạng 1/40)
              = 20/40
              =1/2
      =) A> 1/2   (1)
  ta lại có  A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40 < 1/20 + 1/20 +...+ 1/20 ( có 20 số hạng 1/20)
                    =20/20
                    =1
       =) A <1 (2)
từ (1), (2) = 1/2 <A<1

Hoàng Minh Hiếu
21 tháng 4 2021 lúc 21:55

tick cho mình bn ơi

Hoàng Minh Hiếu
21 tháng 4 2021 lúc 22:10

tick cho mình bn bn hứa rùi mfa

Trần Nguyễn Xuân Phát
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Lê Văn Trường
25 tháng 12 2021 lúc 20:18

đúng rùi

Khách vãng lai đã xóa
Đào Minh	Anh
Xem chi tiết
Kiều Vũ Linh
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5