cho tổng A=1+2+3+..+n(n thuộc N*)
a) Tính A với n = 50
b)Tính A với n =79
Tính tổng
a, A =1+2+2^2+2^3+...+2^2016
b, B=1.2.3+2.3.4+3.4.5+...+n(n+1).(n+2)
Với n thuộc N*
c, C=1.4+2.5+3.6+...+n(n+3)
Với n thuộc N *
a) \(A=1+2+2^2+...+2^{2016}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(\Rightarrow A=2^{2017}-1\)
Vậy \(A=2^{2017}-1\)
b) \(B=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy...
Tính
A = 1 + 2 + 3 + 4 + ... + 100
Sau đó nêu ra cách tính tổng quát :
A = 1 + 2 + 3 + 4 + ... + n với n thuộc N* ; n > 2 hoặc n = 2
Số số hạng của A là:100-1+1=100(số)
Tổng của A là:
(100+1).100:2=5050
Tổng quát: A=1+2+3+...+n=(n+1).n:2
với n thuộc N* kí hiệu an=(-1)n . n2+n+1/n
hãy tính tổng a1+a2+a3+...+a2017
Tính các tổng sau:
a) S1 = 1+a2+a4+a6+....+a2n, với ( a > hoặc = 2, n thuộc N)
b) S2 = a+a3+a5+.......+a2n+1, với (a > hoặc = 2, n thuộc N*)
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
1. Chứng tỏ rằng M là số chính phương biết rằng :
M = 1 + 3 + 5 ... + [2n -1] [với n thuộc N]
2. Tính tổng :
a) A = 1^2 + 2^2 + 3^2 + ... + 10^2
b) Tính theo cách hợp lí tổng :
B= 5^2 + 10^2 + 15^2 + ... + 50^2
3. Tìm n thuộc N biết :
a) 4^n = 256
b) 6^20 . 6^4n = 6^200
Cho dãy số a1, a2,a3,......, an xác định như sau : an = 6n-3 với n thuộc N và n>9
a) Tính tổng 17 số đầu tiên của dãy
b) Tích 100 số bất kì của dãy có chia hết cho 399 không ?
a)
Tổng 17 số đầu tiên là
(6x1-3)+(6x2-3)+....+(6x17-3)
=6(1+2+3+...+17)-3x17
=6x153-17
=867
b)
Tích 100 số hạng bất kì là
(6m−3)[6(m+1)−3].......[6((m+99)−3)] (6m−3)[6(m+1)−3].......[6((m+99)−3)]
=3(2m−1)3[2(m+1)+1]......3[2(m+99)+1] =3(2m−1)3[2(m+1)+1]......3[2(m+99)+1]
=3 100 (2m−1)[2(m+1)−1].......[2(m+99)−1] =3100(2m−1)[2(m+1)−1].......[2(m+99)−1]
chia hết cho 399
Vậy tích 100 số bất kì của dãy chia hết cho 399
Nghi vấn Nobi Nobita tự hỏi tự trả lời.
Nobi Nobita và ♚Nguyễn ♛ Trấn ♜ Thành ♝ là 1.
Thứ 1: tôi thấy tất cả những câu của ♚Nguyễn ♛ Trấn ♜ Thành ♝ đều có dấu chân trả lời của Nobi nobita."cái này đã nghi rồi"
Thứ 2. thời gian trả lời đó chỉ mất 1 đến 2 phút "không thể nào".
Thứ 3: ♚Nguyễn ♛ Trấn ♜ Thành ♝ rất hay tick cho nobita. "quá nhiều dấu vết gian lận"
Lấy đâu ra kiểu công bằng đấy hả.
Ngoại lệ: trên hoc24 có quá nhiều trường hợp "hỏi tự trả lời", không phải xa lạ gì nữa, vậy càng có khả năng Nobi nobita gian lận thi cử.
Cho dãy số a1, a2,a3,......, an xác định như sau : an = 6n-3 với n thuộc N và n>9
a) Tính tổng 17 số đầu tiên của dãy
b) Tích 100 số bất kì của dãy có chia hết cho 399 không ?
a)Tính n thuộc N để n2 +2n+3 chia hết cho n+1
b)Tìm UwCLN(21n+3,7n+2) với n thuộc N
a)n2+2n+3=n2+n+n+1+2
=n.(n+1)+(n+1)+2
=(n+1)(n+1)+2
=>Để n2+2n+3 chia hết cho n+1 thì:
2 chia hết cho n+1
=>n+1 thuộc Ư(2)={-1;1;-2;2}
=>n=-2(loại);n=0;n=-3(loại);n=1
Vậy n={0;1}
Cho dãy số a1, a2,a3,......, an xác định như sau : an = 6n-3 với n thuộc N và n>9
a) Tính tổng 17 số đầu tiên của dãy
b) Tích 100 số bất kì của dãy có chia hết cho 399 không ?
Gíup mình với , mình cần gấp lắm