thay các chữ x , y bằng chữ số thích hợp để được số m= x125y chia hết cho 2,5 và chia cho 9 dư 4
thay các chữ x , y bằng chữ số thích hợp để được số m x54y chia hết cho 5và chia cho 9 dư 2
Cho x753y là số có 5 chữ số. Hãy thay x và y bởi các chữ số thích hợp để được số chia cho 2,5 và 9 đều dư 1
Để chia cho 2 dư 1: -> y gồm các số: 1,3,5,7,9 (1)
Để chia cho 5 dư 1: -> y gồm các số: 1 và 6 (2)
Từ (1) và (2) => y=1
x7531 chia cho 9 dư 1 -> x+7+5+3+1 chia 9 dư 1 <=> x+16 chia 9 dư 1
=> x = 3
Vậy số cần tìm là 37531
số cần tìm là 37531 càn giải chi tiết ko bạn
Bài 1. Thay a; b bằng những chữ số thích hợp để số 4̅̅𝑎̅̅2̅̅𝑏̅ chia hết cho 2; 5 và 9 Bài 2. Tìm a, b thích hợp để số 20̅̅̅̅𝑎̅2̅̅𝑏̅ chia hết cho cả 9 và 25. Bài 3. Thay x, y bởi những chữ số thích hợp để số 3̅̅𝑥̅̅57̅̅̅𝑦̅ chia 2 dư 1, chia 5 dư 3 và chia hết cho 9. Bài 4. Tìm số nhỏ nhất có 3 chữ số chia cho 2 dư 1; chia cho 5 dư 4 và chia cho 9 dư 7. Bài 5. Số bút chì cô giáo có ít hơn 35 chiếc và nhiều hơn 20 chiếc. Khi đem số bút chì đó chia cho 5 hoặc chia cho 3 thì vừa hết. Hỏi lúc đầu, cô giáo có tất cả bao nhiêu chiếc bút chì? Bài 6. Trong một cuộc họp người ta xếp ghế thành 2 dãy, nếu mỗi ghế có 3 người ngồi thì số đại biểu ở 2 dãy bằng nhau. Nhưng nếu mỗi ghế có 5 người ngồi thì sẽ có 4 đại biểu ngồi riêng. Hãy tính số đại biểu tham gia cuộc họp, biết rằng số người dự họp là số lớn hơn 60 và nhỏ hơn 100
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Cho 51xy.Hãy thay x và y bằng những chữ số thích hợp để được một số có 4 chữ số chia hết cho 2:chia 3 dư 1:chia 5 dư 4
51xy chia 5 dư 4 =>y=4;9
mà 51xy chia hết cho 2 nên y=4
ta được 51x4
51x4 chia 3 dư 1
=>5+1+x+4 chia 3 dư
=>10+x chia 3 dư 1
=>x=3;6;9
vậy y=4 ; x thuộc {3;6;9}
1.Thay các chữa,b bằng các chữ số thích hợp trong số 4a1b để được 1 số chia cho 2 dư 1 chia hết cho 5 và chia hết cho 3
2.Tìm tất cả các số có hai chữ số khi chia cho 2 thì dư 1 khi chia cho 3 thì dư 2 khi chia cho 5 thì dư 4
3. Thay a,b trong số 2003ab bởi chữ số thích hợp để số này đồng thời chia hết cho 2,5 và 9
4. Tìm số tự nhiên bé nhất chia cho 2 dư 1 chia cho 3 dư 2 chia cho 4 dư 3 và chí cho 5 dư 4
5. Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 4 dư 2 chia cho 5 dư 3 chia cho 6 dư 4
Câu 1 : 4215,4515,4815
Câu 2: 29,59,89
Câu 3: 200340
Câu 4: 59
Câu 5: 22
Bài 1. Thay a; b bằng những chữ số thích hợp để số 4̅̅𝑎̅̅2̅̅𝑏̅ chia hết cho 2; 5 và 9
Bài 2. Tìm a, b thích hợp để số 20̅̅̅̅𝑎̅2̅̅𝑏̅ chia hết cho cả 9 và 25.
Bài 3. Thay x, y bởi những chữ số thích hợp để số 3̅̅𝑥̅̅57̅̅̅𝑦̅ chia 2 dư 1, chia 5 dư 3 và chia hết cho 9
Bài 5. Số bút chì cô giáo có ít hơn 35 chiếc và nhiều hơn 20 chiếc. Khi đem số bút chì đó chia cho 5 hoặc chia cho 3 thì vừa hết. Hỏi lúc đầu, cô giáo có tất cả bao nhiêu chiếc bút chì?
Bài 5:
Vì số bút chì khi đem chia 5 hoặc 3 thì vừa hết số bút chì sẽ vừa chia hết cho 5; vừa chia hết cho 3
=>Số bút chì sẽ chia hết cho 15
mà số bút chì có nhiều hơn 20 chiếc và ít hơn 35 chiếc
nên số bút chì là 30 chiếc
cho a = 5xly. Hãy thay x,y bằng những chữ số thích hợp để được một số có 4 chữ số khác nhau chia hết cho 2,3 và chia cho 5 dư 4.
Để a chia 5 dư 4 và a chia hết cho 2 thì y=4
=>\(a=\overline{5x14}\)
a chia hết cho 3
=>\(5+x+1+4⋮3\)
=>x+10 chia hết cho 3
=>\(x\in\left\{2;5;8\right\}\)
mà a là số tự nhiên có 4 chữ số khác nhau
nên loại số 5
=>\(x\in\left\{2;8\right\}\)
a) Cho A=3a2b. Tìm tất cả các chữ số thích hợp của a và b để khi thay A vào ta được số chia cho 2,3 và 5 đều dư 1
b) Cho M =x459y. Hãy thay x và y bằng những chữ số thích hợp để nếu lấy M lần lượt chia cho 5,2 và 9 đều dư 1
a) chia 2 và 5 dư 1 => b luôn luôn = 1
thế làm sao cho tổng các chữ số chia 3 dư 1 là xong
b) tương tự
cho câu a = 702xly. hãy thay x ; y bằng những chữ số thích hợp để được số có 6 chữ số khác nhau chia hết cho 2 ; 9 và chia 5 dư 3
Giải:
Vì số phải tìm chia cho 5 dư 3 nên chữ số tận cùng phải là 3 hoặc 8. Nhưng số đó phải chia hết cho 2 => ta chọn y = 8
Thay y vào ta có số : 702xl8 . Mà số đó phải chia hết 9 nên => 7 + 0 + 2 + x + l + 8 chia hết 9
=> x = 1 ; l = 0 hoặc x = 0 ; l = 1
Thay vào ta có số: 702108 hoặc 702018 . Nhưng vì số đó phải là số có 6 chữ số khác nhau => x = 1 ; l = 0 hoặc x = 0 ; l = 1 (loại)
=> x = 9 ; l = 1 hoặc x = 1 ; l =9 => Ta có số : 702198 hoặc 702918 (tm)
Vậy ta có 2 đáp số : ......tự ghi nhá!