6x3 - 11x2 - x - 2
Phân tích đa thức thành nhân tử :
a.x4 - 4x3 + 11x2 - 16x + 16
b.x4 + 6x3 + 13x2 + 12x + 4
c.x4 + x3 - 4x2 + x + 1
d.x4 + x3 - 4x2 + x + 1
c: \(x^4+x^3-4x^2+x+1\)
\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)
\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)
\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)
Phân tích đa thức thành nhân tử : x4 + 6x3 + 11x2 + 6x + 1
\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+3x^3+x^2+3x^3+9x^2+3x+x^2+3x+1\)
\(=\left(x^2+3x+1\right)^2\)
Cho f(x)=x4+6x3+11x2+6x
a/ Chứng minh f(x) ⋮ 24
b/ Điều kiện cho x để f(x) ⋮ 5
c/ Điều kiện cho x để f(x) ⋮ 72
\(f\left(x\right)=x^4+6x^3+11x^2+6x=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x\) là số nguyên nên \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích của \(4\) số nguyên liên tiếp nên trong đó có nhất một số chia hết cho \(4\), một số chia hết cho \(3\), một số chia hết cho \(2\) nhưng không chia hết cho \(4\) nên \(f\left(x\right)\) chia hết cho \(2.3.4=24\).
Để \(f\left(x\right)\) chia hết cho \(5\) thì \(x,x+1,x+2,x+3\) có một số chia hết cho \(5\).
Có \(72=2.4.9\) nên để \(f\left(x\right)\) chia hết cho \(72\) thì trong \(4\) số \(x,x+1,x+2,x+3\) có một số chia hết cho \(9\) hoặc hai số chia hết cho \(3\), suy ra \(x\) chia hết cho \(3\).
Giải các phương trình sau: x - 2 x + 2 - 3 x - 2 = 2 x - 11 x 2 - 4
⇔ (x – 2)(x – 2) – 3(x + 2) = 2x – 22
⇔ x 2 – 2x – 2x + 4 – 3x – 6 = 2x – 22
⇔ x 2 – 2x – 2x – 3x – 2x + 4 – 6 + 22 = 0
⇔ x 2 – 9x + 20 = 0
⇔ x 2 – 5x – 4x + 20 = 0
⇔ x(x – 5) – 4(x – 5) = 0
⇔ (x – 4)(x – 5) = 0
⇔ x – 4 = 0 hoặc x – 5 = 0
x – 4 = 0 ⇔ x = 4
x – 5 = 0 ⇔ x = 5
Vậy phương trình có nghiệm x = 4 hoặc x = 5.
A= ( x khác 1 )
mn giúp e với ạ
tinh : B=5/2x1 +4/1x11 + 3/11x2 +2/11x2 + 1/2x15 + 13/15x4
5/2\(\times\)1=\(\frac{5}{2\times1}hay=\frac{5}{2}\times1\)
P(x)=-6x3-2+4x2+2x-2
Q(x)=-8-4x2+6x3-x4+3x
a,xắp sếp từ lớn đến nhỏ theo lũy thừa
b,tính P(x)-Q(x);P(x)+Q(x)
a: \(P\left(x\right)=6x^3+4x^2+2x-4\)
\(Q\left(x\right)=-x^4+6x^3-4x^2+3x-8\)
b: \(P\left(x\right)-Q\left(x\right)=x^4+8x^2-x+4\)
\(P\left(x\right)+Q\left(x\right)=-x^4+12x^3+5x-12\)
Tìm x:
a) x(x-1)+x=4
b) 3x(x-5)-2x+10=0
c) 5x2-3x-2=0
d) x4-11x2+18=0
a) \(x^2-x+x=4\)
\(x^2=4\)
\(x=\pm2\)
b) \(3x\left(x-5\right)-2\left(x-5\right)=0\)
\(\left(x-5\right)\left(3x-2\right)=0\)
\(\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(a+b+c=5-3-2=0\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{c}{a}=\dfrac{-2}{5}\end{matrix}\right.\)
d) Đặt \(x^2=t\left(t\ge0\right)\) . Lúc đó phương trình trở thành :
\(t^2-11t+18=0\)
\(\left[{}\begin{matrix}t=9\left(tmđk\right)\\t=2\left(tmđk\right)\end{matrix}\right.\)
\(t=9\rightarrow x^2=9\rightarrow x=\pm3\)
\(t=2\rightarrow x^2=2\rightarrow x=\pm\sqrt{2}\)
tìm x:
(15x4 +4x3 +11x2 +14x–8):(5x2 +3x–2)
i) x3- 11x2 + 30x;
j) 4x4- 21x2y2 + y4
k) x3 + 4x2- 7x - 10;
l) (x2 + x)2- (x2 + x) + 15;
i) x3- 11x2 + 30x
=\(x\left(x^2-11x+30\right)\)
=\(x\left(x-6\right)\left(x-5\right)\)
j) 4x4- 21x2y2 + y4
=4x^4+4x^2y^2+y^4-25x^2y^2
=(2x^2+y^2)^2-(5xy)^2
=(2x^2+y^2-5xy)(2x^2+y^2+5xy)