Tìm a thuộc n để A=a^2+a+b là số chính phương. Ai giúp mình với ạ mình cần gấp
Cho phân số A = 3n - 1/ n-2 (n thuộc Z). Tìm n để A là phân số tối giản
Các bạn giúp mình với ạ
Mình đang cần gấp
Mình cảm ơn các bạn @@
Để a là phân số tối giản thì ƯCLN(3n-1;n-2)=1
Gọi ƯCLN(3n-1;n-2)=d => 3n-1 chia hết cho d;n-2 chia hết cho d
=>3n-1-(n-2) chia hết cho d
=>3n-1-3(n-2) chia hết cho d
=>3n-1-3n-6 chia hết cho d
=>-5 chia hết cho d
NHỜ CÁC BẠN GIÚP MÌNH VỚI Ạ,MÌNH ĐANG CẦN GẤP, MÌNHCẢM ƠN NHIỀU
Cho a; b là 2 số nguyên cùng tính chẵn lẻ, CMR: ab là hiệu của 2 số chính phương
(a+b)2-(a-b)2=4ab=>ab = \(\left(\dfrac{a+b}{2}\right)^2\)-\(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là hiệu 2 số chính phương vì a≡b(mod 2) => a+b và a-b chia hết cho 2 nên \(\left(\dfrac{a+b}{2}\right)^2\) và \(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là 2 số tự nhiên
Tìm n sao cho các số sau là số chính phương
a,n2 +2n+12
b,n2+n+6
Giúp mình với,mình đang cần gấp
Đặt \(n^2+2n+12=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+11=a^2\)
\(\Rightarrow\left(n+1\right)^2-a^2=-11\)
\(\Rightarrow\left(n+1-a\right)\left(n+1+a\right)=-11\)
Đến đây bạn xét ước của 11 nên tìm ra n dễ dàng.
P/S:Câu b tương tự.
a, Đặt \(n^2+2n+12=k^2\left(k\in N\right)\)
\(\Rightarrow\left(n^2+2n+1\right)+11=k^2\Rightarrow k^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\)
Ta thấy: \(k+n+1>k-n-1\) và \(k+n+1;k-n-1\in N\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\cdot1\)
Với \(k+n+1=11\Rightarrow k=6\)
Thay vào ta có: \(k-n-1=1\Rightarrow6-n-1=1\Rightarrow n=4\)
Phạm Trà Giang sao biết n+1=5 vậy
VCT pascal nhập hai số a;b (a>0 ; b>0) Xuất ra màn hình các số chính phương từ a-b giúp mình với ạ😭mình đang cần gấp!!!
var tam,a,b,i:integer;
begin
write('a = ');readln(a);
write('b = ');readln(b);
if a < b then
begin
tam:=a;
a:=b;
b:=tam;
end;
for i:=a to b do
if sqrt(i) = trunc(sqrt(i)) then write(i:10);
readln;
End.
a,CM tích 4 số tự nhiên liên tiếp cộng với 1 là số chính phương
b,CMR số n^2+n+1 với n nguyên dương không là số chính phương
Giúp mình nha mình cần gấp lắm!!!!!
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
Cho A= 2n-7/n-2 (n thuộc Z)
a) Tìm giá trị của n để A là phân số.
b) Với n thỏa mãn ( n2+1) x (n3 + 64) =0, tính A.
c) Tìm các giá trị của n để A=3.
d) Tìm các giá trị của n để A là số nguyên.
e) Tìm các giá trị của n để A là phân số tối giản.
Giúp mình với, mình đang cần gấp. Ai trả lời nhanh nhất và đúng nhất mình sẽ cho tick
Mọi người ghi cả cách giải nhé
Cho a,b,c thuộc N sao cho (a+2)(b+3)(c+4)=8abc tìm a,b,c ai giúp mình với ạ mình đang vần gấp
ta có
4x6x8 = 8x2x3x4
(2+2)(3+3)(4+4) = 8x2x3x4
(a+2)(b+3)(c+4) = 8abc
vậy a=2 b=3 c=4
cách này chx chắc đúng
Cho các số nguyên dương a,b thỏa mãn a >= b và a^2 +4b+3 là số chính phương. Chứng minh rằng b^2 +4a+12 là số chính phương. Giúp mình với mình đang cần gấp plss!! 😭😭😭
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
Tìm số nguyên dương n để biểu thức n^5 -n+2 là sô chính phương
Giúp mình với mình đang cần gấp !
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
Cho A = x-2/-7 với x thuộc Z
a/ Tìm các giá trị lớn nhất của x để A là số hữu tỉ dương
b/ Tìm giá trị bé nhất của x để A là số hữu tỉ âm
Mình đag cần rất gấp
Ai lm nhanh mình tick nhanh. Giúp mình với