Tìm P biết:
\(\frac{a^2-2ab}{a^2b}\). P = \(\frac{a^2b-4b^3}{3ab^2}\)
Tìm x:
\(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\)
\(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\Leftrightarrow x=\frac{a^2b-4b^3}{3ab^2}:\frac{a^2-2ab}{a^2b}\Leftrightarrow x=\frac{b\left(a^2-4b^2\right)}{3ab^2}:\frac{a\left(a-2b\right)}{a^2b}\)
\(\Leftrightarrow x=\frac{\left(a-2b\right)\left(a+2b\right)}{3ab}.\frac{ab}{a-2b}\Leftrightarrow x=\frac{a+2b}{3}\)
Vậy \(x=\frac{a+2b}{3}\)
Có : \(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\)
\(\Leftrightarrow x=\frac{a^2b-4b^2}{3ab^2}.\frac{a^2b}{a^2-2ab}\)
\(\Leftrightarrow x=\frac{a\left(a^2b-4b^2\right)}{3b\left(a^2-2ab\right)}=\frac{a^3b-4ab^2}{3a^{ }b-6ab^2}\)
Cho \(a^3-4a^2b=2b^3-5ab^2,a\ne b\ne0\) .Tính \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\) .
1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)
từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1
Cho \(a^3-4a^2b=2b^3-5ab^2\)
Tính \(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
G/t suy ra (a-2b)(a-b)2=0
suy ra a=2b hoặc a=b
thay vào được ....
cho\(a^3-4a^2b=2b^3-5ab^2\) giá trị của biểu thức P=\(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
Cho a3+4a2b=2b3-5ab2 và a khác b khác 0.
Giá trị \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab^2}=?\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
Cho a3 - 4a2b = 4b3 - 5ab2. Tính P = \(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
a3-4a2b-4b3+5ab2=0
==>(a-b)3 - b (a-b)2 =0
==>a-b = b ==> a=2b
thay a=2b vào biểu thức ta đc kết quả bằng 1
hình như mấy cái GP của Đinh Tuấn Việt là giả hay sao ấy nhỉ
cho a^3-4a^2b=2b^3-5ab^2 gia tri bieu thuc P=5a^2-4b^2+2ab/6a^2+2b^2-3ab
a3-4a2b=2b3-5ab2
=>(a3-3a2b+3ab2-b3)-(a2b+b3-2ab2)=0
=>(a-b)3-b(a2-2ab+b2)=0
=>(a-b)2(a-2b)=0
=> a-2b=0 (vì a#b#0 bạn thiếu điều kiện nha)
=>a=2b. Thay a=2b vào bt P ta đc P=1
Tìm a biết : \(\frac{1+2b}{18}=\frac{1+4b}{24}=\frac{1+6b}{6a}\)
Ta có \(\frac{1+2b}{18}=\frac{1+4b}{24}\Leftrightarrow24+48b=18+72b\Leftrightarrow24b=6\Leftrightarrow b=\frac{1}{4}\)
Thay b = 1/4 vào giả thiết còn lại \(\frac{1+4b}{24}=\frac{1+6b}{6a}\Rightarrow\frac{1+1}{24}=\frac{1+\frac{3}{2}}{6a}\Leftrightarrow6a=30\Leftrightarrow a=5\)
Vậy a = 5 , b = 1/4
Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)