cho B=1/2^2+1/3^2+1/4^2+...+1/2016^2 Chứng minh B>1/2
a) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}.\) Chứng minh rằng: A < 1
b) Cho B= \(2^1+2^2+2^3+...+2^{2016}\) Chứng minh rằng: B chia hết cho 21
Cho B=1/3+1/3^2+1/3^3+1/3^4+...+1/3^2016+1/3^2017.
Chứng minh rằng B<1/2
Giúp minh nhé . Mình cảm ơn !
Bài làm:
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)
<=> \(2B=1-\frac{1}{3^{2017}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)
=> \(B< \frac{1}{2}\)
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\); \(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)< \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)= \(\dfrac{2015}{2016}\) (ĐCPCM)
Chứng minh rằng : \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
Bài này dễ,ông không chịu làm thì có ^_^:
Ta có:\(B=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+....+\left(\frac{1}{2^{2014}+1}+....+\frac{1}{2^{2015}}\right)+\frac{1}{2^{2015}+1}+...+\frac{1}{2^{2016}-1}\)
\(>1+\frac{1}{2}+2.\frac{1}{2^2}+2^2.\frac{1}{2^3}+........+2^{2014}.\frac{1}{2^{2015}}\)
\(=1+\frac{1}{2}+\frac{1}{2}+.........+\frac{1}{2}\) (có 2015 phân số \(\frac{1}{2}\))
\(=1+2014.\frac{1}{2}+\frac{1}{2}=1008+\frac{1}{2}>1008\)
Bài 1: Tìm các số nguyên x sao cho -1 < 4/x < 5/-8
Bài 2: Chứng minh rằng B = 1 + 1/2 + 1/3 + 1/4 + 1/5 +.......+ 1/2^2016-2 +1/2^2016-1 > 1008
Ai nhanh m tick nha!!
cho B=(1+1/2+1/3+1/4+...+1/99).2016^2017. chứng minh A hết cho 11
Cho S=1/4+2/4^2+3/4^3+...+2016/4^2016. Chứng minh rằng S<1/2
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?