Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hạnh Dung
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Ngô Chi Lan
26 tháng 8 2020 lúc 15:50

Bài làm:

Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)

=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)

<=> \(2B=1-\frac{1}{3^{2017}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)

=> \(B< \frac{1}{2}\)

Khách vãng lai đã xóa
nguyễn lam nhật
Xem chi tiết
nguyễn lam nhật
9 tháng 5 2016 lúc 20:43

hhv vbmkj55144466

Dưa Hấu
Xem chi tiết
LazyGirl_1111
14 tháng 3 2022 lúc 13:25

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

Đinh Đức Hùng
Xem chi tiết
Nguyễn Hưng Phát
5 tháng 2 2018 lúc 23:47

Bài này dễ,ông không chịu làm thì có ^_^:

Ta có:\(B=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+....+\left(\frac{1}{2^{2014}+1}+....+\frac{1}{2^{2015}}\right)+\frac{1}{2^{2015}+1}+...+\frac{1}{2^{2016}-1}\)

\(>1+\frac{1}{2}+2.\frac{1}{2^2}+2^2.\frac{1}{2^3}+........+2^{2014}.\frac{1}{2^{2015}}\)

\(=1+\frac{1}{2}+\frac{1}{2}+.........+\frac{1}{2}\)  (có 2015 phân số  \(\frac{1}{2}\))

\(=1+2014.\frac{1}{2}+\frac{1}{2}=1008+\frac{1}{2}>1008\)

Le Khong Bao Minh
Xem chi tiết
Krissy
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết
Lê Anh Quân
Xem chi tiết