cho X^3+Y^3+z^3 = 3xyz. Tính P= 2016xyz/(x+y)(y+z)(z+x)
Cho 3 số thực x,y,z khác nhau thỏa mãn \(^{x^3+y^3+z^3=3xyz}\). Tính \(\frac{2016xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
phân tích gt sau đó suy ra x+y+x=0
từ đây tính đc x+y=? y+z=? x+z=?
ta được kết quả là'; -2006
Xét \(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+2xy+y^2-xy-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
TH1:\(x+y+z=0\)
\(\Rightarrow x+y=-z;y+z=-x;z+x=-y\left(1\right)\)
Thay (1) vô pt cần tính:
\(\frac{2016xyz}{-z.-x.-y}=\frac{2016xyz}{-\left(xyz\right)}=-2016\)
TH2:\(x^2+y^2+z^2-xy-yz-xz=0\)
Nhân 2 vế với 2
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
Do VT dương
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-z\right)^2=0\\\left(y-z\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x-y=0\\x-z=0\\y-z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}}\Rightarrow x=y=z\)
Thay y,z ở pt cần tính là x
\(\Rightarrow\frac{2016x.x.x}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{2016x^3}{2x.2x.2x}=\frac{2016x^3}{8x^3}=\frac{2016}{8}=252\)
Vậy pt có thể = -2016 khi x + y + z = 0
pt có thể = 252 khi \(x^2+y^2+z^2-xy-xz-yz=0\)
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz=0\)
\(\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-xz-yz=0\end{cases}}\)
TH1 : \(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\x+z=-y\\y-z=-x\end{cases}}\)
Thay vào biểu thức ta có :
\(\frac{2016xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=\frac{2016xyz}{-xyz}=-2016\)
TH2 : \(x^2+y^2+z^2-xy-xz-yz=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(y^2-2yz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\x-z=0\\y-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}\Rightarrow}x=y=z}\)
Từ đây ta biến đổi biểu thức :
\(\frac{2016x^3}{2x\cdot2x\cdot2x}=\frac{2016x^3}{8x^3}=252\)
Vậy........
Cho ba số nguyên x,y,z và x3+y3+z3=3xyz.
\(P=\frac{2016xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\).Giá trị P=?
Đề chưa chuẩn: tuy nhiên đánh vào -2016 => đáp án đúng:
Vì bản chất như sau:
thỏa ĐK ban đầu x^3+y^3+z^3=3xzy
Từ HĐT=>
\(\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\left(2\right)\end{cases}}\)
=>(1)&(2) đều có cặp nghiệm x=y=z=0 khi đó P không xác định
do vậy đề thiếu điều kiện x,y,z không đồng thời =0:(*)
Nếu thêm đk (*) giải tiếp
(2) vô nghiệm
do vậy khi đó chỉ có nghiệm duy nhất của (1)
x+y=-z
x+z=-y
z+y=-x
Thay vào biểu thwucs P=-2016
Đây cũng là lý do mình không thích thi VIOLIMPIC
nhiều đáp án sai--> đề sai--> gây ức chế--> không thi
Cho 3 số phân biệt x, y, z sao cho \(x^3+y^3+z^3=3xyz\). Tính \(P=\dfrac{2016xyz}{\left(x+y\right)\left(y+z\right)+zx}\).
Cho 3 số phân biệt \(x,y,z\in R\) sao cho \(x^3+y^3+z^3=3xyz\). Tính \(P=\dfrac{2016xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
\(x^3+y^3+z^3=3xyz\)
⇔ \(\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz=0\)
⇔ \(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2-2xy+y^2+z^2-2xz+x^2+y^2-2yz+z^2\right)=0\) ⇔ \(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Do : x , y , z là ba số thực phân biệt , ta có :
\(x+y+z=0\)
⇔ \(x+y=-z;y+z=-x;x+z=-y\)
Khi đó , ta có : \(P=\dfrac{2016xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\dfrac{2016xyz}{-xyz}=-2016\)
Bài 7: Tính P = x^3+y^3-z^3 +3xyz biết x = 811, y = 812 và z = - 815.
Bài 8: Tính P = x^3-y^3-z^3 +3xyz biết x^2+y^2+z^2=16, xy-yz+zx=-10
Đáp án:
Giải thích các bước giải:
Ta có:
Vậy .
MÌNH CHỈ BIẾT LÀM B7 THÔI NHA
P= 811^3+ 812^3+815^3+3.811.812.(-815)= 31694
K ĐÚNG HỘ TỚ NHA
???
???
???
???
Cho x, y, z đôi một khác nhau thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(xyz\ne0\). Tính: \(B=\dfrac{16.\left(x+y\right)}{z}+\dfrac{3.\left(y+z\right)}{x}-\dfrac{2019.\left(x+z\right)}{y}\)
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)
Cho x^3+y^3+z^3=3xyz vaf x+y+z #0. Tính giá trị của A=\(\frac{x^2+y^2+z^2}{\left(x+y+z\right)^2}\)
Cho các số x,y,z đôi một khác nhau thỏa mãn:x^3(y-z)+z^3(x-y)=y^3(z-x).
Cmr: x^3+y^3+z^3=3xyz
cho x+y+z=2016 tính M=\(\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2+xy-yz-zx}\)
\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)
Đặt \(N=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)
(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là \(x^2+y^2+z^2-xy-yz-zx\) nhé!