1+3-2+7=
(5/7-7/7)-[0,2-(-2/7-1/10]
(3-1/4+2/3)-(5-1/3-5/6)-(6-7/4+-3/2)
1/3-3/4--3/5+1/64-2/9-1/3+1/15
3/5:(1/15-1/6)+3/5:(-1/3-16/15)
1/2(-3/4-13/14):5/7-(-2/21+1/7):7/7
\(\left(\dfrac{5}{7}-\dfrac{7}{7}\right)-\left[0,2-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
=\(-\dfrac{2}{7}-\left[\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)
=\(-\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{10}\)
=\(\left(-\dfrac{2}{7}-\dfrac{2}{7}\right)-\left(\dfrac{1}{5}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\left(\dfrac{2}{10}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\dfrac{3}{10}\)
=\(-\dfrac{40}{70}-\dfrac{21}{70}\)
=\(-\dfrac{61}{70}\)
(3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\)) - (5 - \(\dfrac{1}{3}\) - \(\dfrac{5}{6}\)) - (6 - \(\dfrac{7}{4}\) - \(\dfrac{3}{2}\))
= 3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\) - 5 + \(\dfrac{1}{3}\) + \(\dfrac{5}{6}\) - 6 + \(\dfrac{7}{4}\) + \(\dfrac{3}{2}\)
= (3 - 5 - 6) + ( \(\dfrac{7}{4}\) - \(\dfrac{1}{4}\)) + (\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= - 8 + \(\dfrac{3}{2}\) + 1 + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= (- 8 + 1) + (\(\dfrac{3}{2}\) + \(\dfrac{3}{2}\)) + \(\dfrac{5}{6}\)
= -7 + 3 + \(\dfrac{5}{6}\)
= - 4 + \(\dfrac{5}{6}\)
= \(\dfrac{-19}{6}\)
a)-1/24-[1/4-(1/2-7/8)]
b)(5/7-7/5)-[-1/2-(-2/7-1/10)
c)(-1/2)-(-3/5)+(-1/9)+1/71-(-2/7)+4/35-7/18
d) (3-1/4+2/3) -(5-1/3-6/5)-(6-7/4+3/2)
a) -1/24 - [ 1/4 - ( 1/2 - 7/8 )]
= -1/24 - [ 1/4 +3/8 ]
= -1/24 - 5/8
= -2/3.
a) -1/24 - [ 1/4 - ( 1/2 - 7/8 )]
= -1/24 - [ 1/4 +3/8 ]
= -1/24 - 5/8
= -2/3.
Xin lỗi nha chỉ có thời gian làm câu a) thôi
Tính:
A=1+7+7^2 +7^3+..+7^2007
B=1+4+4^2+4^3+...+4^100
C=1+3^2+3^4+3^6+3^8+...+3^100
D=7+7^3+7^5+7^7+7^9+...+7^99
E=2+2^3+2^5+2^7+2^9+...+2^9009
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
5) (3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) 6) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
7) (5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) 8) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 pls help me
5: \(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)
\(=3-5-6+\dfrac{-1}{4}+\dfrac{7}{4}+\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{6}{5}-\dfrac{3}{2}\)
\(=-8+\dfrac{3}{2}+1+\dfrac{-3}{10}\)
\(=-7+\dfrac{15-3}{10}=-7+\dfrac{6}{5}=-\dfrac{29}{5}\)
6: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=6-5-3-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}+\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
7: \(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)
\(=9-2-10+\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{-3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\)
=-3+1
=-2
8: \(=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=8+6-3+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}-1-\dfrac{2}{4}\)
\(=11+2-1-\dfrac{1}{2}\)
=11+1/2
=11,5
(3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
(5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 )
mọi người ơi giúp mik với ạ
2/7 : 1/4 - 1/7
7/11 x 0 + 5/9 : 1/2
( 3/7 + 1/4 ) : 3/4
4/3 x 1/2 + 7/2 : 1/4
\(\dfrac{2}{7}:\dfrac{1}{4}-\dfrac{1}{7}=\dfrac{2}{7}x\dfrac{4}{1}-\dfrac{1}{7}=\dfrac{8}{7}-\dfrac{1}{7}=\dfrac{7}{7}=1\)
\(\dfrac{7}{11}x0+\dfrac{5}{9}:\dfrac{1}{2}=0+\dfrac{5}{9}x\dfrac{2}{1}=\dfrac{10}{9}\)
\(\left(\dfrac{3}{7}+\dfrac{1}{4}\right):\dfrac{3}{4}=\left(\dfrac{12}{28}+\dfrac{7}{28}\right)x\dfrac{4}{3}=\dfrac{19}{28}x\dfrac{4}{3}=\dfrac{19}{21}\)
\(\dfrac{4}{3}x\dfrac{1}{2}+\dfrac{7}{2}:\dfrac{1}{4}=\dfrac{4}{6}+\dfrac{7}{2}x\dfrac{4}{1}=\dfrac{2}{3}+\dfrac{14}{1}=\dfrac{2}{3}+14=14\dfrac{2}{3}=\dfrac{44}{3}\)
(1/5-2/7).3/4-3/4.(1/3-2/7)/1/5.2/7-1/3.(2/7+3/9)+3/9.1/5
Cho \(A=\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\) \(B=\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)
So sánh A và B
Ta có
A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)
Đặt C = 1 + 7 + 72 + 73+...+711
7C = 7 + 72 + 73 + ... + 711 + 712
=> 6C = 712 - 1
C = \(\dfrac{7^{12}-1}{6}\)
Đặt D = 1 + 7 + 72 + 73+...+710
7D = 7 + 72 + 73 + ... + 710 + 711
=> 6D = \(7^{11}-1\)
D = \(\dfrac{7^{11}-1}{6}\)
=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)
A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)
A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)
A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003
Lại có:
B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\
Đặt H = \(1+3+3^2+3^3+...+3^{11}\)
3H = \(3+3^2+3^3+...+3^{12}\)
=> 2H = \(3^{12}-1\)
H = \(\dfrac{3^{12}-1}{2}\)
Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)
3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)
=> 2Q = \(3^{11}-1\)
Q = \(\dfrac{3^{11}-1}{2}\)
=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)
B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)
B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)
B = \(\dfrac{3^{12}-1}{3^{11}-1}\)
B = 3, 00001129
Vì 7, 000000003 > 3, 00001129
=> A > B
Vậy A > B
so sánh
P=\(\dfrac{1+7^2+7^3+...+7^{100}}{1+7^2+7^3+...+7^{99}}\)
Q=\(\dfrac{1+9^2+9^3+...+9^{100}}{1+9^2+9^3+...+9^{99}}\)