Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trân Trân
Xem chi tiết
duy khang nguyễn
Xem chi tiết
Nguyễn Quang Định
26 tháng 12 2016 lúc 19:48

(12x^2-6x+4)/(x^2+1)= (3x^2+3+9x^2-6x+1)/(x^2+1)= 3(x^2+1)+(3x-1)^2/(x^2+1)=3+(3x-1)^2

Vì (3x-1)^2 >= 0 => để đạt GTNN thì (3x-1)^2=0. Vậy GTNN là 3 tại x=1/3 ( tự tìm nghiệm x)

Cúc Nguyễn
Xem chi tiết
Hoàng Phúc
23 tháng 12 2016 lúc 17:54

P=(12x^2-6x+4)/(x^2+1)

=(9x^2-6x+1+3x^2+3)/(x^2+1)

=(9x^2-6x+1)/(x^2+1)+(3x^2+3)/(x^2+1)

=(3x-1)^2/(x^2+1)+3(x^2+1)/(x^2+1)

=(3x-1)^2/(x^2+1)+3 >= 3 với mọi x  (do (3x-1)^2/(x^2+1) dương với mọi x)

Vậy minP=3,dấu "=" xảy ra <=> x=1/3

Trần Thùy
Xem chi tiết
marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Nhún
Xem chi tiết
Dương Lam Hàng
18 tháng 4 2019 lúc 20:35

\(A=x^4+6x^3+13x^2+12x+12\)

     \(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)

      \(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)

       \(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)

Đặt \(t=x^2+3x+5\)

Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)

Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3

                                          <=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)

                                           \(\Leftrightarrow x^2+x+2x+2=0\)

                                            \(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

                                             \(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2

Nhún
18 tháng 4 2019 lúc 20:15

CÁC BẠN GIẢI NHANH HỘ NHÚN VỚI

Đàm Tùng Vận
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 9:00

\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Trần Văn Thành
Xem chi tiết
Phúc Lê
Xem chi tiết
Đinh Đức Hùng
2 tháng 8 2017 lúc 9:31

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(=\left|1-3x\right|+\left|3x-2\right|\)

\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)

Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)

Võ Huỳnh Minh Thuận
2 tháng 8 2017 lúc 9:31

Xin lỗi cậu tớ mới học lớp 7 thôi