Bài 5. a) Chứng minh với mọi số nguyên n biểu thức (2n+3)^2 -9 chia hết cho 4
b)Chứng minh với mọi số nguyên n biểu thức (4n+3)^2-25 chia hết cho 8
Bài 1 viết biểu thức (4n+3)^2-25 Thành tích chứng minh với mọi số nguyên biểu thức (4n+3)^2-25 chia hết cho 4
Bài 2 :chứng minh với mọi số nguyên n biểu thức (2n+3)^2-9 chia hết cho 4
Bài 2:
\(\left(2n+3\right)^2-9\)
\(\rightarrow4n^2+12n+9-9\)
\(\rightarrow4n^2=12n\)
\(\rightarrow4n.\left(n+3\right)\)
\(\rightarrow4⋮4\)
\(\rightarrow4n⋮4\)
\(\rightarrow4n.\left(n+3\right)⋮4\)
\(\rightarrow\left(2n+3\right)^2-9⋮4\)
chứng minh với mọi số nguyên n thì biểu thức:
a) \(\left(4n+3\right)^2-25\)chia hết cho 8
b) \(\left(2n+3\right)^2-9\)chia hết cho 4
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
B1: Chứng minh với mọi số nguyên n biểu thức (4n + 3)^2 - 25 chia hết cho 8
Ta có bđt:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)\)
Áp dụng ta có: Đề bài sẽ bằng:0 \(\left(4n+3-5\right)\cdot\left(4n+3+5\right)\)\(=\left(4n-2\right)\left(4n+8\right)⋮8\)vì\(4n-2⋮2,4n+8⋮4\)
(4n+3)^2-25
=(4n+3)^2-5^2
=(4n+3+5)(4n+3-5)
=(4n+8)(4n-8)
=[4(n+2)][2(n-4)]
=8(2+n)(n-4)luôn chia hết cho 8
Vậy...
bài 1 cho a và b là hai số tự nhiên .biết a chia cho 3 dư 1 ; b chia cho 3 dư 2 .chứng minh rằng ab chia cho 3 dư 2
bài 2 chứng minh rằng biểu thức n (2n-3) -2n (n+1) luôn chia hết cho 5 với mọi số nguyên n
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Chứng minh rằng
a) Biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
b) Biểu thức ( 2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi giá trị của m , n
làm ơn giúp mình với
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
1.Chứng minh 2n^2 .(n+1) - 2n(n^2 + n -3 ) chia hết cho 6 với mọi số nguyên n
2.Chứng minh n(3-2n)-(n-1)(1+4n)-1 chia hết cho 6 với mọi số nguyên n
3.Cho biểu thức : (m^2 -2m+4)(m+2)-m^3 + (m+3)(m-3)-m^2-18
Chứng minh giá trị của P khôgn phụ thuộc vào m
AI có thể giúp tớ vs đc k ạ tớ sẽ stick cho ai tl đúng nhé
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a, <=> 2n[ n(n+1)-n2-n+3)
<=> 2n( n2+n-n2-n+3)
<=> 6n chia hết cho 6 với mọi n nguyên
b, <=> 3n-2n2-(n+4n2-1-4n) -1
<=> 3n-2n2-n-4n2+1+4n-n-1
<=> 6n-6n2
<=> 6(n-n2) chiiaia hhehethet cchchocho 6
c ,<=> m3-23-m3+m2-32-m2-18
<=>-35 => ko phụ thuộc vào biến
Chứng minh rằng với mọi số nguyên n ta có
a) (4n+3)2-25 chia hết cho 8
b)(2n+3)2-9 chia hết cho 4
a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16
Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8
=>16n^2-8n+32n-16 chia hết cho 8
b)(2n+3)^2-9
=(2n+3-3)(2n+3+3)
=2n(2n+6)=4n^2+12n
Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4
chứng minh biểu thức
n x (2n-3)-2nx(n+1) luôn chia hết cho 5 với mọi n là số nguyên
(n-1)x(3-2n)-nx(n+5) luôn chia hết cho 3 với mọi số nguyên
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
Chứng minh rằng biểu thức n(2n – 3) – 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n.
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .