Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quang Đức
Xem chi tiết
alibaba nguyễn
16 tháng 12 2016 lúc 11:44

Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)

Ta có

\(x^2+y^3+z^4=90\)

\(\Rightarrow z^4< 90\)

Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được

Hay z nhận các giá trị là 1, 2, 3

Với z = 3 thì

\(x^2+y^3=90-3^4=9\)

Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2

Thế vô lần lược tìm được: y = 2, x = 1

Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại

Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)

Mình chỉ hướng dẫn bạn cách làm thôi nhé.

dinh ngoc quynh chi
17 tháng 2 2020 lúc 21:29

Vì x,y,z là các số nguyên dg nên x,y,z >/1 

Ta có : x+y+z= 90

Suy ra z4 < 90

Ta thấy rằng {4= 256 > 90 , 3= 81 < 90 nên z ko thể >4

Hay z nhận các gt là 1,2,3

Với z=3 thì :

x2

Khách vãng lai đã xóa
Trần Nam Nhật Anh
Xem chi tiết
Trần Việt Khoa
Xem chi tiết
Nguyễn Ngọc Lan
Xem chi tiết
Nguyen Thi Mai
23 tháng 12 2016 lúc 19:54

Bạn tham khảo ở đây nhé

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2018 lúc 3:37

Đinh Thị Hà Linh
Xem chi tiết
Akai Haruma
30 tháng 6 2023 lúc 23:51

Lời giải:
Ta thấy:

$(-x^2y^3)^2\geq 0$ với mọi $x,y$

$(2y^2z^4=2(yz^2)^2\geq 0$ với mọi $y,z$

$\Rightarrow (2y^2z^4)^3\geq 0$ với mọi $y,z$
Do đó để tổng $(-x^2y^3)^2+(2y^2z^4)^3=0$ thì:

$-x^2y^3=2y^2z^4=0$

Hay $(x,y,z)=(x,0,z)$ với $x,z$ bất kỳ hoặc $(x,y,z)=(0,y,0)$ với $y$ là số bất kỳ.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2018 lúc 10:10

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết