CMR : 99.....9 ( n chữ số ) -9n chia hết cho 27 ; 81
cho n thuộc N , CMR: A=17 n+1111...1(n chữ số 1) chia hết cho 9
mk giải thế này có đúng ko: tổng các chữ số của 111...1 là n
17n=17+17+...+17(n số 17)=(1+7)+(1+7)+....+(1+7)(n số 1+7)=(1+7).n=n+7n
=> tổng các chữ số của A là:n+7n+n=9n chia hết cho 9
=> A chia hết cho 9
CMR: B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.
10^n - 9n - 1 chia hết cho 27 (*)
Sử dụng phương pháp quy nạp.
- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27.
- Giả sử (*) đúng với n = k (thuộc N*), tức là:
10^k - 9k - 1 chia hết cho 27
- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là:
10^(k+1) - 9(k+1) - 1 chia hết cho 27.
Thật vậy:
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k
10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27.
81 chia hết cho 27, nên 81k chia hết cho 27.
Vậy (*) đúng với mọi n thuộc N* (đpcm).
1. CMR
a, 1+11+11^2+.....+11^9 chia hết cho 10
b, Số gồm 27 chữ số 1 chia het cho 27
2.CMR
a, 5^n-1 chia hết cho 4(n thuộc N)
b, n^2+n+1 ko chia hết cho 5(n thuộc N)
Bài 1 : Tìm chữ a , b để
a) 134ab chia hết cho 5 và 9
b) 52ab chia hết cho 9 và chia 5 dư 2
c) 35a4b chia hết cho 3
Bài 2 : CMR : 27 số 1 chia hết 27
Bài 3 : Cho A = liên tiếp các số tự nhiên từ 1 đến 99 . Hỏi A có chia hết cho 9 không ?
Bài 4 : A = 100! . Hỏi A có tận cùng là bao nhiêu chữ số 0 ?
Bài 1:
a) 134ab chia hết cho 5 và 9
ta xét trường hợp chia hết cho 5 đầu tiên nên b=0;b=5
khi đó ta có:134a0 hoặc 134a5
sau đó ta xét trường hợp chia hết cho 9
ta có134a0 = 1+3+4+a+0 chia hết cho 9 nên a =1
thử lại:1+3+4+1+0 = 9 chia hết cho 9
tiếp theo ta xét số 134a5
ta có 134a5 = 1+3+4+a+5 chia hết cho 9 nên a =5
thử lại: 1+3+4+5+5=18 chia hết cho 9
đáp số:13415 và 13455
CMR a, 10n+18n-1 chia hết cho 27 (n thuộc N)
b, 1111.........1-10n chia hết cho 9 (có n chữ số 1)
a,\(10^n+18n-1\)
\(=99...9+18n\)(n-1 chữ số 9)
Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)
\(\Rightarrow999..9+18n⋮\left(3.9\right)\)
\(\Rightarrow10^n+18n-1⋮27\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Phạm Tuấn Đạt óc.... . 10n-1 =99..9 (có n chữ số)
có n-1 tức là n=2 thì 102-1 có 1 chữ số
ahihi
a.Cmr với mọi số tự nhiên n thì n3-9n+27 không chia hết cho 81
b.Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó .TÌm số may mắn đó
a,A VÀ 2A có tổng các chữ số đều là n
CMR A chia hết cho 9
b, CMR 10^n + 18n-1 chia hết cho 27 n khác 0
Giải:
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.
Như vậy:2a-n \(⋮\) 9
và a-n \(⋮\) 9
=> (2a-n)-(a-n) \(⋮\) 9
Do đó : a \(⋮\) 9
Ta biết rằng một số và tổng các chữ số cửa nó có cùng số dư trong phép chia cho 9 , đó hiêuhh của chúng chia hết cho 9 .
như vậy :2a - n xhia hết cho 9
và a-n chia hết cho 9
=> (2a - n ) - ( a-n ) chia hết cho 9 .
do đó : a chia hết cho 9
1.Chứng tỏ rằng:
a) Nếu số abcd chia hết cho 99 thì ab + cd chia hết cho 99 và ngược lại.
b)Nếu ab = 2 x cd thì abcd chia hết cho 67.
c) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37
10.Chứng tỏ rằng:
a) 8^10 - 8^9 - 8^8 chia hết cho 55
b)7^6 + 7^5 - 7^4 chia hết cho 11
c)81^7 - 27^9 - 9^13 chia hết cho 45
d)10^9 + 10^8 + 10^7 chia hết cho 555
11.Tìm số tự nhiên n, để :
a) n + 4 chia hết cho n. c) n + 6 chia hết cho n + 2.
b)3 x n + 7 chia hết cho n d) 27 - 5 x n chia hết cho n
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
mình sẽ vote cho 2 bạn đầu tiên . Thank you bạn
đề bài nhăng nhít vậy
Troll việt nam à đây éo phải toán lớp 6
a, ab + ba chia hết cho 11
b, ab - ba chia hết cho 9 ( a > b )
c, cho abc chia hết cho 27 . CMR số bca chia hết cho 27
d, cho abc - deg chia hết cho 7 . CMR abcdeg chia hết cho 37
e, cho abc - deg chia hết cho 7 . CMR abcdeg
g, cho 8 số tự nhiên có 3 chữ số . CMR trong 8 số đó tồn tại hai số mà khi viết lên trên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9
Vậy ab - ba chia hết cho9