cho hình thang ABCD trên cạnh CD lấy 4 điểm
cho hình thang abcd (ab//cd) có ad//bc. lấy điểm e (e khác c) trên cạnh cd dao cho bc =be. chứng minh abed là hình thang cân
Xét tứ giác ABCD có
AB//CD
AD//BC
=>ABCD là hình bình hành
góc BCE=góc BEC
góc BCE=góc ADC
=>góc BED=góc ADE
=>ABED là hình thang cân
Cho hình thang ABCD(AB//CD,AB<CD) lấy điểm M trên cạnh AD và điểm N trên cạnh BC sao cho DM/DA=BN/BC.Lấy điểm I trên cạnh CD sao cho MI//AC. Tìm các tỉ số bằng với tỉ soố DI/DC.
Xét ΔDAC có MI//AC
nên \(\dfrac{DI}{DC}=\dfrac{DM}{DA}\)
mà \(\dfrac{DM}{DA}=\dfrac{BN}{BC}\)
nên \(\dfrac{DI}{DC}=\dfrac{DM}{DA}=\dfrac{BN}{BC}\)
=>Các tỉ số bằng với tỉ số DI/DC là \(\dfrac{DM}{DA};\dfrac{BN}{BC}\)
cho hình thang ABCD . Trên cạnh CD lấy 4 điểm M,N,P,Q.Nói A với mỗi điểm trên cạnh đáy CD . Có bao nhiêu tam giác tạo thành.
các bạn làm ơn chỉ mình cách giải minh tích cho.
Cho hình thang ABCD đáy AB = 4/5 CD. Trên cạnh AD lấy điểm M sao cho AM = 2MD. Trên cạnh BC lấy N sao cho BN = 2/3NC. Biết diện tích BMDC hơn diện tích ABND là 72cm2. Tính diện tích hình thang ABCD.
Vẽ hình luôn giúp mình nha ! Mình hứa sẽ tik cho. Mình cảm ơn!!
Xét tg ABD và tg BCD có đường cao từ D->AB = đường cao từ B->CD nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AB}{CD}=\frac{4}{5}\)
\(S_{ABCD}=S_{ABD}+S_{BCD}\)
Chia \(S_{ABD}\) thành 4 phần bằng nhau thì \(S_{BCD}\) là 5 phần như thế
\(\Rightarrow\frac{S_{ABD}}{S_{ABCD}}=\frac{S_{ABD}}{S_{ABD}+S_{BCD}}=\frac{4}{4+5}=\frac{4}{9}\Rightarrow S_{ABD}=\frac{4xS_{ABCD}}{9}\)
\(\Rightarrow\frac{S_{BCD}}{S_{ABCD}}=\frac{5}{9}\Rightarrow S_{BCD}=\frac{5xS_{ABCD}}{9}\)
Ta có \(\frac{AM}{MD}=2\Rightarrow\frac{AM}{AD}=\frac{2}{3};\frac{NC}{BN}=\frac{3}{2}\Rightarrow\frac{NC}{BC}=\frac{3}{5}\)
Xét tg ABM và tg ABD có chung đường cao từ B->AD nên
\(\frac{S_{ABM}}{S_{ABD}}=\frac{AM}{AD}=\frac{2}{3}\Rightarrow S_{ABM}=\frac{2xS_{ABD}}{3}=\frac{2}{3}x\frac{4xS_{ABCD}}{9}=\frac{8xS_{ABCD}}{27}\)
Xét tg CDN và tg BCD có chung đường cao tư D->BC nên
\(\frac{S_{CDN}}{S_{BCD}}=\frac{CN}{BC}=\frac{3}{5}\Rightarrow S_{CDN}=\frac{3}{5}xS_{BCD}=\frac{3}{5}x\frac{5xS_{ABCD}}{9}=\frac{S_{ABCD}}{3}\)
Ta có
\(S_{BMDC}=S_{ABCD}-S_{ABM}=S_{ABCD}-\frac{8xS_{ABCD}}{27}=\frac{19xS_{ABCD}}{27}\)
\(S_{ABND}=S_{ABCD}-S_{CDN}=S_{ABCD}-\frac{S_{ABCD}}{3}=\frac{2xS_{ABCD}}{3}\)
\(\Rightarrow S_{BMDC}-S_{ABND}=\frac{19xS_{BCD}}{27}-\frac{2xS_{ABCD}}{3}=\frac{S_{ABCD}}{27}=72\Rightarrow S_{ABCD}=27x72=1944cm^2\)
Bài 1: Cho hình thang ABCD đáy AB và CD trên đường chéo AC lấy điểm P sao cho AP = 3 x PC, lấy diểm Q trên cạnh CD sao cho BDQP là hình thang ( đáy BD và PQ). a,So sánh diện tích tam giác ADC và diện tích tam giác BDC. b, Tính tỉ số diện tích BQD và diện tích tam giác BQP.
a/ Hai tg ADC và tg BDC có chung đáy CD và đường cao từ A->CD = đường cao từ B->CD nên \(S_{ADC}=S_{BDC}\)
b/
Ta có
\(AP=3xPC\Rightarrow\dfrac{PC}{AP}=\dfrac{1}{3}\Rightarrow\dfrac{PC}{AC}=\dfrac{1}{4}\)
Hai tg PCQ và tg ACQ có chung đường cao từ Q->AC nên
\(\dfrac{S_{PCQ}}{S_{ACQ}}=\dfrac{PC}{AC}=\dfrac{1}{4}\)
Hai tg trên lại có chung đáy CQ nên
\(\dfrac{S_{PCQ}}{S_{ACQ}}=\) đường cao từ P->CD / đường cao từ A->CD = \(\dfrac{1}{4}\)
Hai tg PDQ và tg ADQ có chung đáy DQ nên
\(\dfrac{S_{PDQ}}{S_{ADQ}}=\) đường cao từ P->CD / đường cao từ A->CD =\(\dfrac{1}{4}\)
Hai tg PDQ và tg BQP có chung đáy PQ và đường cao từ D->PQ = đường cao từ B->PQ nên \(S_{PDQ}=S_{BQP}\)
Hai tg ADQ và tg BQD có chung đáy DQ và đường cao từ A->CD = đường cao từ B->CD nên \(S_{ADQ}=S_{BQD}\)
\(\Rightarrow\dfrac{S_{BQP}}{S_{BQD}}=\dfrac{S_{PDQ}}{S_{AQD}}=\dfrac{1}{4}\)
Cho hình thang ABCD (AB//CD) Lấy điểm I trên cạnh AD,K trên cạnh BC sao cho IK//DC.Chứng minh rằng: AI.BC=AD.BK
kẻ đường chéo BD, gọi O là gđ của BD và IK
ta có AB//CD,IK//CD=> IK//AB//CD
ta có IK//AB=> AI/AD=BO/BD (1)
OK//CD(IK//CD,O thuộc IK)=> BO/BD=BK/BC (2)
(1),(2)=> AI/AD=BK/BC=> AI.BC=AD.BK (đpcm)
Cho hình thang ABCD, lấy điểm M trên đường chéo AC sao cho AM = 2 MC. Lấy điểm N bên cạnh CD sao cho BDNM là hình thang. So sánh diện tích hai tam giác BDN và BDM.
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 5:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Cho hình thang ABCD đáy AB = 4/5 CD. Trên đoạn AD lấy điểm M sao cho AM = 2 MD. Trên cạnh BC lấy N sao cho BN = 2/3 NC. Tính tỉ số diện tích tam gicas ABM và CND
\(AM=2MD\Rightarrow\dfrac{AM}{AD}=\dfrac{2}{3}\)
\(BN=\dfrac{2}{3}NC\Rightarrow\dfrac{NC}{BC}=\dfrac{3}{5}\)
Hai tg ABD và tg BCD có đường cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{4}{5}\)
\(\Rightarrow S_{ABD}=\dfrac{4}{9}xS_{ABCD}\) và \(S_{BCD}=\dfrac{5}{9}xS_{ABCD}\)
Hai tg ABM và tg ABD có chung đường cao từ B->AD nên
\(\dfrac{S_{ABM}}{S_{ABD}}=\dfrac{AM}{AD}=\dfrac{2}{3}\Rightarrow S_{ABM}=\dfrac{2}{3}xS_{ABD}=\dfrac{2}{3}x\dfrac{4}{9}xS_{ABCD}=\dfrac{8}{27}xS_{ABCD}\)
Hai tg CND và tg BCD có chung đường cao từ D->BC nên
\(\dfrac{S_{CND}}{S_{BCD}}=\dfrac{CN}{BC}=\dfrac{3}{5}\Rightarrow S_{CND}=\dfrac{3}{5}xS_{BCD}=\dfrac{3}{5}x\dfrac{5}{9}xS_{ABCD}=\dfrac{1}{3}xS_{ABCD}\)
\(\Rightarrow\dfrac{S_{ABM}}{S_{CND}}=\dfrac{\dfrac{8}{27}xS_{ABCD}}{\dfrac{1}{3}xS_{ABCD}}=\dfrac{8}{9}\)