Cho ba số không âm x, y, z thoả mãn điều kiện x+y+x= 1. Chứng minh rằng A = √x+y+ √y+z √2+x 5 √6.
Cho ba số thực không âm `x,y,z` thoả mãn điều kiện `x^2+y^2+z^2>=3`.Chứng minh rằng `(x+y+x)^3 >=9(xy+yz+zx)`
Cho ba số không âm x,y,z thỏa mãn điều kiện x+y+z=1. Chưngs minh rằng
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Áp dụng BĐT Bu-nhi-a, ta có \(\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\le3\left(2x+2y+2z\right)=6\)
=> A\(\le\sqrt{6}\)
dấu = xảy ra <=> x=y=z=1/3
Cho 3 số không âm x, y, z thỏa mãn điều kiện x + y + z = 6. Chứng minh A = √(x + y) + √(y + z) + √(z + x) ≤ 6
áp dụng bđt cô si ta có:
\(\left(x+y\right)+4\ge4\sqrt{x+y};\left(y+z\right)+4\ge4\sqrt{y+z};\left(z+x\right)+4\ge4\sqrt{z+x}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+12\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\)
\(\Rightarrow24\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\Rightarrow6\ge\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
Cho ba số dương x,y,z thoả mãn điều kiện x + y + z = 1.
Chứng minh rằng : \(\frac{350}{xy+yz+zx}+\frac{386}{x^2+y^2+z^2}>2015\)
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)
\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)
\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)
Cho 3 số không âm x,y,z thỏa mãn điều kiện: x+y+z=1. Chứng minh rằng:
\(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Cho 3 số không âm x,y,z thoả mãn điều kiện \(x+y+z=1\). Chứng minh rằng: \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Ta có : \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\Rightarrow A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)
Theo BĐT Bu - nhi - a - cốp - xki ta có :
\(A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left[2\left(x+y+z\right)\right]=3.2=6\)
\(\Rightarrow A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) khi \(x=y=z=\dfrac{1}{3}\)
cho x y z là các số thực dương thoả mãn x^2+y^3+z^4=1 chứng minh rằng x^5+y^6+z^7<1
Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6. Chứng minh rằng biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\) chia hết cho 6
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
Cho x,y,z là các số thực không âm thỏa mãn điều kiện \(x\ge y\ge z\).Chứng minh rằng:
\(\frac{xy+yz+zx}{x^2+xy+y^2}\ge\frac{\left(x+z\right)\left(y+z\right)}{\left(x+z\right)^2+\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2}\)