Cho ba số không âm x,y,z thỏa mãn điều kiện x+y+z=1. Chưngs minh rằng
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Cho 3 số không âm x, y, z thỏa mãn điều kiện x + y + z = 6. Chứng minh A = √(x + y) + √(y + z) + √(z + x) ≤ 6
Cho ba số dương x,y,z thoả mãn điều kiện x + y + z = 1.
Chứng minh rằng : \(\frac{350}{xy+yz+zx}+\frac{386}{x^2+y^2+z^2}>2015\)
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
Cho 3 số không âm x,y,z thỏa mãn điều kiện: x+y+z=1. Chứng minh rằng:
\(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Cho x,y,z là các số thực không âm thỏa mãn điều kiện \(x\ge y\ge z\).Chứng minh rằng:
\(\frac{xy+yz+zx}{x^2+xy+y^2}\ge\frac{\left(x+z\right)\left(y+z\right)}{\left(x+z\right)^2+\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2}\)
Cho các số thực không âm x,y,z thoả mãn \(x+y+z=3.\).
Chứng minh rằng \(\left(x-1\right)^3+\left(y-1\right)^3+\left(z-1\right)^3\ge-\frac{3}{4}\)
\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện: x^2+ y^2+x^2+x^2y^2+y^2z^2+z^2x^2=6. \text{Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}}\)\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}\)
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)