Tính nhẩm :
2x4=.... 10:2=..... 3x8=..... 15:3=.....
4x3=.... 20:2=..... 5x9=..... 28:4=.....
5x5=.... 40:5=..... 2x7=..... 30:5=.....
cho đa thức Q(x)=-3x4+4x3+2x2+2/3-3x-2x4-4x3+8x4+1+3x
Giải phương trình
e) x4 -4x3-8x2+8x=0
f) 2x2+3xy+y2=0
g) 2x4-x3-9x2+13x-5=0
h) (x+1)(x+3)(x+5)(x+7)+15=0
e: =>x(x^3-4x^2-8x+8)=0
=>x[(x^3+8)-4x(x+2)]=0
=>x(x+2)(x^2-2x+4-4x)=0
=>x(x+2)(x^2-6x+4)=0
=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)
g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0
=>(2x+5)(x^3-3x^2+3x-1)=0
=>(2x+5)(x-1)^3=0
=>x=1 hoặc x=-5/2
h: =>(x^2+8x+7)(x^2+8x+15)+15=0
=>(x^2+8x)^2+22(x^2+8x)+120=0
=>(x^2+8x+10)(x^2+8x+12)=0
=>(x^2+8x+10)(x+2)(x+6)=0
=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)
Cho A(x) = 2x4 + 4x3 - 3x2 - 4x + 1
Tính A(x) : (x2-1)
Ta sử dụng phương pháp chia đa thức bằng phép chia đa thức tổng quát để giải bài toán này. Theo đó, ta có:
2x^4 + 4x³-3x² - 4x + 1: (x² - 1)
= 2x² + 4x + 1 - (x² + 4x + 1)/(x² - 1)
= 2x² + 4x + 1 - (x² - 1 + 4x+2)/(x² -
1)
= 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/(x² - 1) = 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/[(x+1)(x-1)]
Vậy kết quả là:
A(x) (x²-1)=2x² + 4x + 1 - (x² + 4x +
2)/(x² - 1) + 1/[(x+1)(x-1)]
Thực hiện phép chia: (2x4 – 4x3 + 5x2 + 2x – 3):(2x2 - 1)
Vậy (2x4 – 4x3 + 5x2 + 2x – 3) : (2x2 – 1) = x2 – 2x + 3.
P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
Thu gọn
1x 4 + 2 x6 + 3x8+4x 10 + 5x12/ 5x2+10 x 3 + 15 x4+ 20 x5+ 25 x6
\(\dfrac{1.4+2.6+3.8+4.10+5.12}{5.2+10.3+15.4+20.5+25.6}\)
\(=\dfrac{2\left(1.2+2.3+3.4+4.5+5.6\right)}{5\left(1.2+2.3+3.4+4.5+5.6\right)}\)
\(=\dfrac{2}{5}\)
Tính f(x) + g(x) – h(x) biết:
f(x) = x5 – 4x3 + x2 – 2x + 1
g(x) = x5 – 2x4 + x2 – 5x + 3
h(x) = x4 – 3x2 + 2x – 5
Ta có: f(x) + g(x) – h(x)
= (x5 – 4x3 + x2 – 2x + 1) + (x5 – 2x4 + x2 – 5x + 3) – (x4 – 3x2 + 2x – 5)
= x5 – 4x3 + x2 – 2x + 1 + x5 – 2x4 + x2 – 5x + 3 – x4 + 3x2 - 2x + 5
= (x5 +x5) – (2x4 + x4) – 4x3 + (x2 + x2 + 3x2)- (2x + 5x + 2x) + (1 + 3 + 5)
= (1 + 1)x5 – (2 + 1)x4 – 4x3 + (1 + 1 + 3)x2 - (2 + 5 + 2)x + (1 + 3 + 5)
= 2x5 – 3x4 – 4x3 + 5x2 – 9x + 9
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
1/
A = 3√1+√849+3√1−√8491+8493+1−8493 là một số nguyên
2/
a) Cho x = √4+√10+2√5+√4−√10+2√54+10+25+4−10+25. Tính giá trị biểu thức:
P = x4−4x3+x2+6x+12x2−2x+12x4−4x3+x2+6x+12x2−2x+12
b) Cho x = 1+3√21+23 . Tính giá trị của biểu thức B = x4−2x4+x3−3x2+1942x4−2x4+x3−3x2+1942
3/
Rút gọn:
A = √x√x−5−10√xx−25−5√x+5xx−5−10xx−25−5x+5
B = √x√x+3+2√x√x−3−3x+9x−9xx+3+2xx−3−3x+9x−9
Làm ơn, giúp mik với. Mik đang cần gấp!