Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phúc
Xem chi tiết
pham trung thanh
4 tháng 12 2017 lúc 20:23

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

dfuckthebitchingguy
Xem chi tiết
long Bui
Xem chi tiết
bui anh thai
Xem chi tiết
bui anh thai
12 tháng 1 2017 lúc 21:27
trả lời hộ mk cho bn nào trả lời đc
Thắm Chu
Xem chi tiết
Trần Điền
Xem chi tiết
Nguyễn Anh Quân
8 tháng 3 2018 lúc 12:30

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

Trần Điền
8 tháng 3 2018 lúc 12:34

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

Nguyễn Ngọc Tuấn Anh
1 tháng 11 2019 lúc 20:33

Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)

\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x=y

Khách vãng lai đã xóa
le quang huy
Xem chi tiết
Trần Đức Thắng
28 tháng 1 2016 lúc 21:47

Đặt \(\frac{\left(x+y+1\right)^2}{xy+x+y}=a\) ( ĐK a > 0 )

=> A = a + 1/a 

(*)  \(\left(x+y+1\right)^2\ge3\left(xy+x+y\right)\)( Nhân 2 vế với hai sau đưa về hằng đẳng thức ) 

=> \(\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\Leftrightarrow a\ge3\)

TA có \(A=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}\cdot\frac{1}{a}}+\frac{8\cdot3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Vậy GTNN của A là 10/3 tại x = y= 1 

Hazoonan Hiakari
Xem chi tiết
Phạm Đức Long
8 tháng 4 2016 lúc 21:47

a,x=5;y=9

Do thi huyen
Xem chi tiết