Tìm GTNN A=(x-1)(2x-1)(2x^2-3x-1)+2017
Tìm GTNN
2) B= /3x-1/+/4y+2/-3x
3) C= /2x-1/+/2x+5/+2017
4) D= /x+3/+/2x-1/+/x-1/
Tìm GTNN của
(x-1)(2x-1)(2x^2-3x-1)+2017
Hộ mình nha :3
Đặt : P = \(\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
Dấu "=" xảy ra <=> \(2x^2-3x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy GTNN của P là 2016 đạt tại x = 0 hoặc x = 3/2
mik làm xong rồi bạn ạ:))
1/ Tìm GTLN
a/ -x^2 + x - 1/4
b/ -3x^2 - 2x + 9
c/ -5x^2 - 1/2x + 17
2/Tìm GTNN
a/ x^2 + x - 1/4
b/ 3x^2 - 2x - 9
c/ 5x^2 - 1/2x - 17
Tìm GTNN:
A=2x^2+2xy+y^2-2x-2y
b=x^2+xy+y^2-3y-3x
B=x^4-2x^3+3x^2-2x+1
1. cmr với mọi x, y ta có:
a) x^2 + 9y^2 + z^2 +19/2 >2x + 2y +4z
b) (x-1)(x-3)(x-4)(x-6) + 9 lớn hơn hoặc bằng 0
c) (x+1)(x+2)(x+3)(x+4) +1 lớn hơn hoặc bằng 0
2. tìm x, y để các biểu thức sau đạt GTNN:
A = x^4 - 2x^3 +3x^2 - 4x + 2017
B = 2x^2 + 9y^2 - 6xy - 6x - 12y + 2018
C= 1 - |1-3x| + (3x-1)^2
Trả lời nhanh giúp mk nhé!
tìm GTNN
a, A=(x^2-3x+1)(x^2-3x-1)
b, B=2x^2+2xy+y^2-2x+2y+z
a, A = (x^2-3x)^2 - 1 >=-1
Dấu "=" xảy ra <=> x^2-3x = 0 <=>x.(x-3) = 0 <=> x=3 hoặc x=0
Vậy Min A = -1 <=> xz=3 hoặc x=0
b, Đề thiếu kìa bạn ơi
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
1. Tìm GTNN, GTLN \(A=\frac{1}{\sqrt{3-x^2}}\)
2. GTNN \(Z=\frac{2-x}{1-2x}+\frac{1+2x}{3x}\)
1,2 kiểu gì ẹ
3,
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2
4.
Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)
<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)
Áp dụng BDT COSI thì
\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)
Do đó có dpcm
Làm tương tự rồi cộng lại ta đc bdt ban đầu
Dấu bằng xảy ra khi a=b=c
\(\dfrac{1}{2x-x^2-4}\) tìm GTLN/ GTNN
\(\dfrac{3x^2+14}{x^2+4}\)
\(\dfrac{2x+1}{x^2+2}\)