x\(^2\) -8x + 15
( x mũ 2 + 8x + 7 ) ( x mũ 2 + 8x + 15 )+ 15
\(\left(x^2+8x+7\right)\cdot\left(x^2+8x+15\right)+15=\left(x^2+8x+11\right)^2-16+15\)
\(\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\cdot\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\cdot\left(x+2\right)\cdot\left(x+6\right)\)
( x2 + 8x + 7 )( x2 + 8x + 15 ) + 15 (1)
Đặt t = x2 + 8x + 7
(1) <=> t( t + 8 ) + 15
= t2 + 8t + 15
= t2 + 3t + 5t + 15
= t( t + 3 ) + 5( t + 3 )
= ( t + 3 )( t + 5 )
= ( x2 + 8x + 7 + 3 )( x2 + 8x + 7 + 5 )
= ( x2 + 8x + 10 )( x2 + 8x + 12 )
= ( x2 + 8x + 10 )( x2 + 2x + 6x + 12 )
= ( x2 + 8x + 10 )[ x( x + 2 ) + 6( x + 2 ) ]
= ( x2 + 8x + 10 )( x + 2 )( x + 6 )
Đặt \(x^2+8x+11=y\)
Từ đó: \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x+11-4\right)\left(x^2+8x+11+4\right)+15\)
\(=\left(y-4\right)\left(y+4\right)+15\)
\(=y^2-16+15\)
\(=y^2-1\)
\(=\left(y-1\right)\left(y+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
A = x^15-8x^14+8x^13-8x^12+⋯-8x^2+8x-5 với x = 7
x=7
nên x+1=8
\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x-5=7-5=2\)
Tính nhanh: M= x^15-8x^14+8x^13-8x^12+...- 8x^2+8x-2015 với x=7
thay x=7
ta có:7^15-8*7^14+887^13-8*7^12+...-8*7^2+8*7-2015
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
tinh nhanh M= x^15-8x^14+8x^13-8x^12+...- 8x^2+8x-2015 voi x=7
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\)
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)
Gọi `A=(x^2+8x+8)(x^2+8x+15)+15`
Đặt `t=x^2+8x+11,5`
`=>A=(t-3,5)(t+3,5)+15=t^2-3,5^2+15=t^2-2,75=(t-sqrt(2,75))(t+sqrt(2,75))=(x^2+8x+11,5-(sqrt11)/2)(x^2+8x+11,5+(sqrt11)/2)=(x^2+8x+(23-\sqrt11)/2)(x^2+8x+(23+\sqrt11)/2)`
x^15 - 8x^14 + 8x^13 + 8x^12 + ...-8x^2 + 8x - 5 . cho biet x=7 . (8x có nghĩa là 8 nhân x nhang )
Phân tích nhân tử:
(x2+8x+7)*(x2+8x+15)+15
Đặt \(t=x^2+8x+11\) và \(A=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\): \(\Rightarrow A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
1 tính giá trị
B=x^15-8x^14+8x^13-8x^2+.....-8x^2+8x-5 với x=7
x=7 nên x+1=8
B=x^15-x^14(x+1)+x^13(x+1)-...-x^2(x+1)+x(x+1)-5
=x^15-x^15-x^14+x^14+...-x^3-x^2+x^2+x-5
=x-5
=7-5
=2
\(B=x^{15}-8x^{14}+8x^{13}-8x^2+...-8x^2+8x\)\(-5\)
tại x=7
Vì x = 7
\(\Rightarrow\)\(x+1=8\)
\(\Rightarrow\)\(A=x^{15}\)\(-\)\(8x^{14}\)\(+\)\(8x^{13}\)\(-\)\(8x^{12}\)\(+\)... \(-\)\(8x^2\)\(+8x-5\)
\(=\)\(x^{15}\)\(-\left(x+1\right)x^{14}\)\(+\left(x+1\right)x^{13}\)\(-\left(x+1\right)x^{12}\)\(+\)... \(-\)\(\left(x+1\right)x^2\)\(+\left(x+1\right)x-5\)
\(=\)\(x^{15}\)\(-\)\(x^{15}\)\(-\)\(x^{14}\)\(+\)\(x^{14}\)\(+\)\(x^{13}\)\(-\)\(x^{13}\)\(-\)\(x^{12}\)\(+\)... \(-\)\(x^3\)\(-\)\(x^2\)\(+\)\(x^2\)\(+\)\(x\)\(-\)\(5\)
\(\Rightarrow\)\(x=-5\)
\(\Rightarrow\)\(A=7-5=2\)
Vậy \(A=2\) khi \(x=7\)
1,giải các phương trình sau
a,(x^2-x-10).(x^2-x-8)-8=0
b,(x-1).(x+1).(x+3).(x+5)+15=0
c,15x^4-8x^3-14x^2-8x+15+0