Given that \(f\left(x\right)=x^4+ax^3+b\)is divisible by \(g\left(x\right)=x^2+1\)
Find a+b
Given that f(x)=x^4+ax^3+b is divisible by g(x)=x^2-1. Find a+b
\(x^2-1=\left(x+1\right)\left(x-1\right)\)
\(f\left(x\right)=x^4+ax^3+bf\left(x\right)=x^4+ax^3+b\)
Theo định lí Bezout, ta có :
\(f\left(1\right)=1+ax^3+b=0=>a+b=-1\)
\(f\left(-1\right)=1-a+b=0=>-a+b=-1\)
Giải hệ phương trình, ta có:
a+b=-1
-a+b=-1
=> a=0;b=-1
=>a+b=-1
Given that f(x) = x4+ax3+b is divisible by g(x)=x2-1. Find a+b
Given that f(x) = x4+ax3+b is divisible by g(x)=x2-1. Find a+b
Given that f(x) = x4+ax3+b is divisible by g(x)=x2-1. Find a+b
Xác định a, b để \(f\left(x\right)⋮g\left(x\right)\)
a) f(x)= \(2x^3-3x^2+ax+b\) ; \(g\left(x\right)=x^2+x+2\)
b) \(f\left(x\right)=2x^4+ax^2+b\) ; \(g\left(x\right)=x^2-x-3\)
c) \(f\left(x\right)=3x^4-8x^3-10x^2+ax-b\) ; \(g\left(x\right)=3x^2-2x+1\)
d) \(f\left(x\right)=ax^3+bx^2-11x+30\) ; \(g\left(x\right)=x^2-3x-10\)
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5
Xác định a, b để f(x) \(⋮\) g(x)
a) \(f\left(x\right)=2x^3-3x^2+ax+b\) ; \(g\left(x\right)=x^2+x+2\)
b) \(f\left(x\right)=2x^4+2x^2+b\) ; \(g\left(x\right)=x^2-x-3\)
c) \(f\left(x\right)=3x^4-8x^3-10x^2+ax-b\) ; \(g\left(x\right)=3x^2-2x+1\)
d) \(f\left(x\right)=ax^3+bx^2-11x+30\) ; \(g\left(x\right)=x^2-3x-10\)
Cho 2 đa thức \(f\left(x\right)=2x^2+ax+4\) và \(g\left(x\right)=x^2-5x-b\) (\(a,b\) là hằng số)
Tìm các hệ số \(a,b\) sao cho \(f\left(1\right)=g\left(2\right)\) và \(f\left(-1\right)=g\left(5\right)\)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
Xác định a, b để \(f\left(x\right)⋮g\left(x\right)\)
a) \(f\left(x\right)=2x^3-3x^2+ax+b\)
\(g\left(x\right)=x^2+x+2\)
b) \(f\left(x\right)=2x^4+ax^2+b\)
\(g\left(x\right)=x^2-x-3\)
c) \(f\left(x\right)=3x^4-8x^3-10x^2+ax-b\)
\(g\left(x\right)=3x^2-2x+1\)
d) \(f\left(x\right)=ax^3+bx^2-11x+30\)
\(g\left(x\right)=x^2-3x-10\)