Cmr : 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
CMR: Với mọi số nguyên dương n thì :
a)A=3n+3+3n+1+2n+2+2n+1 chia hết cho 6
b)B=3n+3-2n+3+3n+2-2n+1 chia hết cho 10
(nghiêm cấm hành vi làm đc câu 1 câu 2 viết tương tự xin cảm ơn)
CMR 3n+3+3n+1+2n+3+2n+2 chia hết cho 7
Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.
chứng minh 3n+2-2n+2+3n-2n chia hết cho 10
theo mình nhớ thì đề bài có lũy thừa hay sao ý
3n+2-2n+2 +3n-2n
=(3n+2+3n)+(-2n+2 -2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1)chia hết cho 10
Vậy 3n+2-2n+2 +3n-2n chia hết cho 10
Đề phải là: chứng minh 3n+2-2n+2+3n-2n chia hết cho 10
Trả lời
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot\left(9+1\right)-2^n\cdot\left(4+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy...
1] 3n+1 thuộc Ư[10]
2] 13 chia hết cho[3n+1]
3] 2n+8 chia hết cho 2n+1
4] 6n+6 chia hết cho 2n+1
\(1.3n+1\inƯ\left(10\right)\)
Ta lập bảng xét giá trị
3n+1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
3n | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
n | 0 | -2/3 | 1/3 | -1 | 4/3 | -2 | 3 | -11/3 |
\(2.13⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta lập bảng xét g trị
3n+1 | 1 | -1 | 13 | -13 |
n | 0 | -2/3 | 4 | -14/3 |
\(3.2n+8⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 | 7 | -7 |
2n | 0 | -2 | 6 | -8 |
n | 0 | -1 | 3 | -4 |
\(4.6n+6⋮2n+1\)
\(\Rightarrow6n+3+1⋮2n+1\)
\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 |
2n | 0 | -2 |
n | 0 | -1 |
Bài chứng minh hả bạn
ko đây là bài tìm n thuộc số tự nhiên
CMR: (2n+1)(n^2-3n-1)-2n^3+1 chia hết cho 5
Ta có : \(2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
=> \(-5n^2-5n=-5\left(n^2+n\right)\)Như vậy luôn chia hết cho 5 với mọi n
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
CMR
(2n-3) (3n-2) - (3m-2) (2n-3) chia hết cho 5 với m,n thuộc Z
Sửa đề
\(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)
\(=\left(6mn-4m-9n+6\right)-\left(6mn-4n-9m+6\right)\)
\(=6mn-4m-9n+6-6mn+4n+9m-6\)
\(=5m+5n\)
\(=5\left(m+n\right)\)
Vì \(5\left(m+n\right)⋮5\)
\(\Rightarrow\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)⋮5\)