Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đức Duy Anh
Xem chi tiết
Đoàn Đức Hà
9 tháng 11 2021 lúc 17:07

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+...+2^{57}\right)⋮5\)

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).

Khách vãng lai đã xóa
Anh Nguyen Thi
Xem chi tiết
Anh Nguyen Thi
24 tháng 10 2018 lúc 21:50

Đề phòng giáo dục đấy năm 2018

nguyenthithuytrang
Xem chi tiết
kaitovskudo
15 tháng 1 2016 lúc 21:46

A=2(1+2+22+...+212

=> A chia hết cho 2

Vậy A chia hết cho 2(đpcm)

nguyen tung duong
15 tháng 1 2016 lúc 21:48

a chia hết cho 2

 

Trần Hùng Minh
15 tháng 1 2016 lúc 21:49

A = 2 + 22 + 23 + ... + 211 + 212

   = 2.(1 + 2 + 22 + ... + 210 + 211) chia hết cho 2

Vậy A chia hết cho 2 (ĐPCM).

Conan
Xem chi tiết
SỒNG A NỦ
14 tháng 12 2020 lúc 8:22
Bộ câu hỏi trắc nhiện môn học kỹ thuật an toàn . Nghề kỹ thuật cơ điện mỏ hầm lò
Khách vãng lai đã xóa
Đỗ Thị yến trang
Xem chi tiết
nguyễn tuấn thảo
15 tháng 7 2019 lúc 7:36

\(ab+ba=(10a+b)+(10b+a)\)

\(=10a+b+10b+a\)

\(=11a+11b\)

\(=11\left(a+b\right)\)

\(a+b\inℕ\Rightarrow ab+ba⋮11\)

nguyễn tuấn thảo
15 tháng 7 2019 lúc 7:42

\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)

\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)

\(\Rightarrow A=2^{2009}-2\)

Tần Khải Dương
Xem chi tiết
Toru
22 tháng 12 2023 lúc 20:07

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

Lê Quang Khải
22 tháng 12 2023 lúc 20:10

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
Đào Ngọc thuận
Xem chi tiết
Đào Ngọc thuận
21 tháng 2 2020 lúc 21:03

có ai ko

Khách vãng lai đã xóa
Đào Ngọc thuận
21 tháng 2 2020 lúc 21:48

giúp mk vs

Khách vãng lai đã xóa
Nguyễn Thị Thùy Trâm
21 tháng 2 2020 lúc 21:54

Gọi \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) + ... + \(\frac{1}{2^n}\) là A

Ta có :

\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)

\(\frac{1}{2^3}\)<\(\frac{1}{2.3}\)

\(\frac{1}{2^4}\)<\(\frac{1}{3.4}\)

....

\(\frac{1}{2^n}\)<\(\frac{1}{\text{(n - 1) . n}}\)

❄ Nên :

A < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{\text{(n - 1) . n}}\)

A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

A < \(1-\frac{1}{n}\) < 1

Vậy A < 1

\(\frac{1}{2^2}\)\(\frac{1}{2^2}\)

Khách vãng lai đã xóa
Danh Phan Sỹ
Xem chi tiết
Fire Sky
3 tháng 1 2019 lúc 19:38

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3+2^2.3+...+2^{2020}.3⋮3\)

     VẬY \(S⋮3\)

Trả lời :...........................................

SCSH: (2021 - 1) : 1 = 2020

Tổng: (2021 + 1) : 2 = 1011

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

Kiệt Nguyễn
3 tháng 1 2019 lúc 19:42

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(\text{Số số hạng của S là 2022 số , chia làm 1011 cặp , mỗi cặp 2 số .}\)

\(\Leftrightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(\Leftrightarrow S=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(\Leftrightarrow S=3+2^2\times3+...+2^{2020}\times3\)

\(\Leftrightarrow S=3\left(1+2^2+...+2^{2020}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)