49+2=
D=(4/49)^2*(-49/16)*(-1)^10/(4/25)^2*(-25/144)^2:(-49/144)^2
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
\((1/49-1/2^2)*(1/49-1/3^2)*.....*(1/49-1/40^2)\)
Mọi người giúp mình câu này với!!!!!! Tính A=(1/49-1/2^2)(1/49-1/3^2).....(1/49-1/100^2)
\(A=\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{7^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\left(\dfrac{1}{49}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{10000}\right)\)
=0
Tính
\(\left(\frac{1}{49}-\frac{1}{3^2}\right)\left(\frac{1}{49}-\frac{1}{4^2}\right)...\left(\frac{1}{49}-\frac{1}{49^2}\right)\)
11/49×1/2+11/49÷5/4-11/49×3/4
\(\dfrac{11}{49}\times\dfrac{1}{2}+\dfrac{11}{49}:\dfrac{5}{4}-\dfrac{11}{49}\times\dfrac{3}{4}\)
\(=\dfrac{11}{49}\times\dfrac{1}{2}+\dfrac{11}{49}\times\dfrac{4}{5}-\dfrac{11}{49}\times\dfrac{3}{4}\)
\(=\dfrac{11}{49}\times\left(\dfrac{1}{2}+\dfrac{4}{5}-\dfrac{3}{4}\right)\)
\(=\dfrac{11}{49}\times\left(\dfrac{10}{20}+\dfrac{16}{20}-\dfrac{15}{20}\right)\)
\(=\dfrac{11}{49}\times\dfrac{11}{20}\)
\(=\dfrac{121}{980}\)
Chúc bạn học tốt
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{11}{49}\times\dfrac{1}{2}+\dfrac{11}{49}\div\dfrac{5}{4}-\dfrac{11}{49}\times\dfrac{3}{4}\)
`=`\(\dfrac{11}{49}\times\dfrac{1}{2}+\dfrac{11}{49}\times\dfrac{4}{5}-\dfrac{11}{49}\times\dfrac{3}{4}\)
`=`\(\dfrac{11}{49}\times\left(\dfrac{1}{2}+\dfrac{4}{5}-\dfrac{3}{4}\right)\)
`=`\(\dfrac{11}{49}\times\dfrac{11}{20}\)
`=`\(\dfrac{121}{980}\)
\(\dfrac{11}{49}\times\dfrac{1}{2}+\dfrac{11}{49}:\dfrac{5}{4}-\dfrac{11}{49}\times\dfrac{3}{4}\)
\(=\dfrac{11}{49}\times\dfrac{1}{2}+\dfrac{11}{49}\times\dfrac{4}{5}-\dfrac{11}{49}\times\dfrac{3}{4}\)
\(=\dfrac{11}{49}\times\left(\dfrac{1}{2}+\dfrac{4}{5}-\dfrac{3}{4}\right)\)
\(=\dfrac{11}{49}\times\dfrac{11}{20}=\dfrac{121}{980}\)
Cho
A=1/2+1/3+...+1/49+1/50
B=1/49+2/48+...+48/2+49/2
\(\left(\frac{1}{49}-\frac{1}{3^2}\right).\left(\frac{1}{49}-\frac{1}{4^2}\right)...\left(\frac{1}{49}-\frac{1}{49^2}\right)\)=?
= \(\left(\frac{1}{49}-\frac{1}{3^2}\right)...\left(\frac{1}{49}-\frac{1}{7^2}\right)..\left(\frac{1}{49}-\frac{1}{49^2}\right)=\left(\frac{1}{49}-\frac{1}{3^2}\right)..\left(\frac{1}{49}-\frac{1}{49}\right)...\left(\frac{1}{49}-\frac{1}{49^2}\right)\)
= \(\left(\frac{1}{49}-\frac{1}{3^2}\right)....0...\left(\frac{1}{49}-\frac{1}{49^2}\right)=0\)
\(\left(\frac{1}{49}.\frac{1}{3^2}\right).\left(\frac{1}{49}.\frac{1}{4^2}\right)...\left(\frac{1}{49}-\frac{1}{49^2}\right)\)
AI NHANH MK T
MK cũng mắc bài này nek, chung cảnh ngộ ha!!!
Sai đề hay sao ý. Chỗ cuối phải là \(\frac{1}{49}\times\frac{1}{49^2}\) chứ
S=1/2+1/3+1/4+....+1/49+1/50,P=1/49+2/48+3/47+....+48/2+49/1,hay tim S/P
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50.S
VậyS/P=1/50