Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cần Có Một Cái Tên
Xem chi tiết
Vỹ Ly
3 tháng 12 2016 lúc 10:19

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

=> \(B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

k cho mik nha!

Xem chi tiết

                                                                Giải          

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Khách vãng lai đã xóa

NHầm mất tiêu

Khách vãng lai đã xóa

ĐÂy này chứ lúc nãy gửi nhầm:

Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Lời giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

Khách vãng lai đã xóa
Nhóc Linh Linh
Xem chi tiết
angela milk
28 tháng 7 2016 lúc 9:16

cho 1 số có hai chữ số có tích các chữ số của nó gấp đôi tổng các chữ số đó và khi thay đổi vị trí của các chữ số của số đó thì được số mới kém số đã cho 27 đơn vị. Tìm số đã cho 

Thiên Tỷ
28 tháng 7 2016 lúc 9:17

4(1.2.3) = 1.2.3.4 - 0.1.2.3

4(2.3.4) = 2.3.4.5 - 1.2.3.4

4(3.4.5) = 3.4.5.6 - 2.3.4.5

......................

4(n-1)n(n+1) = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

=> 4 B = ( n-1 )n(n+1)(n+2) => B= (n-1)n(n+1)(n+2):4

Nhok _Yến Nhi 12
28 tháng 7 2016 lúc 9:30

Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

4(1.2.3) = 1.2.3.4 - 0.1.2.3

4(2.3.4) = 2.3.4.5 - 1.2.3.4

4(3.4.5) = 3.4.5.6 - 2.3.4.5

......................

4(n-1)n(n+1) = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

=> 4 B = ( n-1 )n(n+1)(n+2) => B= (n-1)n(n+1)(n+2):4

Nguyễn Đức Tài
Xem chi tiết
Nguyễn Đức Tài
29 tháng 9 2016 lúc 21:37

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

Linh Vuong
Xem chi tiết
Nguyễn Anh Quân
7 tháng 12 2017 lúc 21:16

4B = 1.2.3.4+2.3.4.4+....+(n-1).n.(n+1).4

= 1.2.3.4+2.3.4.(5-1)+....+(n-1).n.(n+1).[(n+2)-(n-2)]

= 1.2.3.4+2.3.4.5-1.2.3.4+....+(n-1).n.(n+1).(n+2)-(n-2).(n-1).n.(n+1)

= (n-1).n.(n+1).(n+2)

=> B = (n-1).n.(n+1).(n+2)/4

k mk nha

Ha Hoang Khai
Xem chi tiết
༺༒༻²ᵏ⁸
22 tháng 5 2021 lúc 20:47

B= 1.2.3+2.3.4+ ... + (n - 1)n(n +1)

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

Khách vãng lai đã xóa
Châu Tuyết Vân
Xem chi tiết
Edogawa Conan
Xem chi tiết
Lê Minh Vũ
2 tháng 8 2017 lúc 10:49

4(1.2.3) = 1.2.3.4 - 0.1.2.3

4(2.3.4) = 2.3.4.5 - 1.2.3.4

4(3.4.5) = 3.4.5.6 - 2.3.4.5

4(n-1)n(n+1) = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

=> 4 B = (n-1)n(n+1)(n+2) => B= (n-1)n(n+1)(n+2):4

l҉o҉n҉g҉ d҉z҉
2 tháng 8 2017 lúc 10:51

Ta có : B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

=> 4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ..... + (n - 1).n.(n + 1)(n + 2)

=> 4B = (n - 1).n.(n + 1)(n + 2)

=> \(B=\frac{\text{(n - 1).n.(n + 1)(n + 2)}}{4}\)

Nguyen Trong Duong
Xem chi tiết