Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Ngà
Xem chi tiết
Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 21:46

d: \(\dfrac{-\left(\sqrt{3}-\sqrt{6}\right)}{1-\sqrt{2}}+\dfrac{6\sqrt{3}+3}{\sqrt{3}}-\dfrac{13}{4+\sqrt{3}}\)

\(=-\sqrt{3}+6+\sqrt{3}-4+\sqrt{3}\)

\(=2+\sqrt{3}\)

Mio owo
Xem chi tiết
An Thy
13 tháng 7 2021 lúc 9:41

\(P=\left(\dfrac{x-1}{\sqrt{x}+1}-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}+1\right).\dfrac{1}{x\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}+1\right).\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(\sqrt{x}-1-\dfrac{\sqrt{x}-1}{\sqrt{x}}+1\right).\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)+\sqrt{x}}{\sqrt{x}}.\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}.\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:20

Bài 2: 

Ta có: \(P=\left(\dfrac{x-1}{\sqrt{x}+1}-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}+1\right)\cdot\dfrac{1}{x\sqrt{x}+1}\)

\(=\left(\sqrt{x}-1-\dfrac{\sqrt{x}-1}{\sqrt{x}}+1\right)\cdot\dfrac{1}{x\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{1}{x+\sqrt{x}}\)

thu hương
Xem chi tiết

a, \(-\dfrac{315}{540}\) = \(\dfrac{-315:45}{540:45}\) = \(\dfrac{-7}{12}\)        b,   \(\dfrac{25.13}{26.35}\) = \(\dfrac{25.13:5:13}{26.35:13:5}\) = \(\dfrac{5}{14}\)

c,     \(\dfrac{6.9-2.17}{63.3-119}\) = \(\dfrac{2.3.9-2.17}{7.9.3-7.17}\) = \(\dfrac{2.(27-17)}{7.(7-17)}\) = \(\dfrac{2}{7}\)

d, \(\dfrac{3.13-13.18}{15.40-80}\) = \(\dfrac{3.13(1-6)}{40.(15-2)}\) = \(\dfrac{-3.13.5}{40.13}\) = \(\dfrac{-15}{40}\) = \(\dfrac{-15:5}{40:5}\) = \(-\dfrac{3}{8}\)

Minh Phươngk9
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 21:05

Bài IV:

1: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

2: Xét (O) có

MA,MB là các tiếp tuyến
Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(3\right)\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD tại C

=>AC\(\perp\)DM tại C

Xét ΔADM vuông tại A có AC là đường cao

nên \(MC\cdot MD=MA^2\left(4\right)\)

Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)

3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc HAM

Xét ΔAHM có AI là phân giác

nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)

Xét ΔOHA vuông tại H và ΔOAM vuông tại A có 

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOAM

=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)

=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)

Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)

=>\(HO\cdot IM=IO\cdot IH\)

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 8:31

\(B=9x^4-\left(2x+1\right)^2-\left(9x^4+6x^2+1\right)\\ =9x^4-4x^2-4x-1-9x^4-6x^2-1\\ =-10x^2-4x-2\)

Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 8:37

\(B=\left(3x^2+1-2x\right)\left(3x^2+1+2x\right)-\left(3x^2+1\right)^2\\ B=\left(3x^2+1\right)^2-4x^2-\left(3x^2+1\right)^2=-4x^2\)

Nguyễn Hữu Thuận
Xem chi tiết
tuan manh
4 tháng 11 2023 lúc 7:31

ĐKXĐ: \(x\ge0\)
\(\dfrac{2\sqrt{x}+x^2+1}{x+2}=\dfrac{\left(\sqrt{x}+1\right)^2}{x+2}\)

Nguyễn Dương Thành Đạt
Xem chi tiết
Phúc Tiến
Xem chi tiết
⭐Hannie⭐
5 tháng 11 2023 lúc 19:47

\(M=\left(\dfrac{\sqrt{x}}{2x}-\dfrac{1}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\\ =\left(\dfrac{\sqrt{x}}{2x}-\dfrac{2\sqrt{x}}{2x}\right)\cdot\left(\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\dfrac{x-2\sqrt{x}}{2x}\cdot\dfrac{x-2\sqrt{x}+1-\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2x}\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2x}\cdot\dfrac{-4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\left(\sqrt{x}-2\right)}{x-1}\)

Nguyễn Mai Linh
Xem chi tiết
Thiên Thương Lãnh Chu
6 tháng 5 2021 lúc 16:26

ĐKXĐ: x>0; x ≠ 1

P = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

    = \(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}}\)

    = \(\dfrac{4x\sqrt{x}}{\sqrt{x}}\)= 4x

Vậy P = 4x với x > 0; x ≠ 1