Số tự nhiên x thoả mãn 2.3x+3(x+2)=99
tìm số tự nhiên thoả mãn : (3.x+1)2 =169
Lời giải:
$(3x+1)^2=169=13^2=(-13)^2$
Vì $3x+1$ là số tự nhiên với mọi $x$ tự nhiên nên $3x+1=13$
$\Rightarrow 3x=12$
$\Rightarrow x=4$
375+156 có chia hết cho 2,5,3,9 hay không
3. Tìm các số tự nhiên x,y thoả mãn điều kiện x^2 − x + 1 = 3^y
3. Tìm các số tự nhiên x,y thoả mãn điều kiện x^2 − x + 1 = 3^y
Tổng tất cả các số tự nhiên x thoả mãn (x+1).(x+2).(x-3).(x-4)=0
(\(x\) + 1).(\(x\) + 2).(\(x\) - 3).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x+1=0\\x+2=0\\x-3=0\\x-4=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=-1\\x=-2\\x=3\\x=4\end{matrix}\right.\)
Vì \(x\) \(\in\) N nên \(x\) \(\in\) {3; 4}
Tổng các số tự nhiên \(x\) thỏa mãn đề bài là:
3 + 4 = 7
tìm x,y là số tự nhiên thoả mãn x+y/xy=3/2
Tìm số tự nhiên x thoả mãn.
b) 3x-2^4=5^3
\(3x-2^4=5^3\\ 3x-16=125\\ 3x=125+16=141\\ x=\dfrac{141}{3}=47\)
\(3x-2^4=5^3\\\Rightarrow3x-16=125\\\Rightarrow3x=125+16\\\Rightarrow3x=141\\\Rightarrow x=141:3\\\Rightarrow x=47\)
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.
Tìm các số tự nhiên x,y thoả mãn \(2^x+3=y^2\)
Cho 3 số tự nhiên x,y,z thoả mãn x^2+y^2=z^2. CMR:x.y.z chia hết cho 15