CMR: với mọi số nguỵên n chẵn và lớn hơn 4 thì:
\(n^4-4n^3-4n^2+16n\) chia hết cho 384
CMR n4+4n3-4n2-16n chia hết cho 384 với mọi số chẵn n
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Chứng minh số có dạng (n^4-4n^3-4n^2+16n) chia hết cho 384 với n là số tự nhiên chẵn và lớn hơn 4
CMR: n4 - 4n3 - 4n2 + 16n chia hết cho 384 với mọi n là số chẵn; n > 2
Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4 n = 2k ( k N, k > 2) A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4. k(k – 2)(k – 1)(k + 1) 8 A 16.8 hay A 128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A 3 mà (3; 128) = 1 nên A 384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4
bạn chứng minh tương tự như trên nhé tha số thôi
Do n là số chẵn => n = 2.k (k > 1)
Ta có:
n4 - 4n3 - 4n2 + 16n
= (2k)4 - 4.(2k)3 - 4.(2k)2 + 16.2k
= 24.k4 - 4.23.k3 - 4.22.k2 + 32k
= 16.k4 - 32k3 - 16k2 + 32k
= 16k3.(k - 2) - 16k.(k - 2)
= (k - 2).(16k3 - 16k)
= (k - 2).16k.(k2 - 1)
= 16.(k - 2)(k - 1).k.(k + 1)
Vì (k - 2).(k - 1).k.(k + 1) là tích 4 số tự nhiên liên tiếp nên (k - 2).(k - 1).k.(k + 1) chia hết cho 3 và 8
Mà (3;8)=1 => (k - 2).(k - 1).k.(k + 1) chia hết cho 24
=> 16.(k - 2).(k - 1).k.(k + 1) chia hết cho 384
=> n4 - 4n3 - 4n2 + 16n chia hết cho 384 (đpcm)
CMR:
a)n^3+3n^2-n+3 chia hết cho 48 với mọi n lẻ
b)n^4+4n^3-4n^2-16n chia hết cho 384 với mọi n chẵn
CMR : Các số có dạng : n4 -4n3 -4n2 + 16n thì chia hết cho 384 ( với n chẵn và n>4)
n4- 4n3 - 4n2 +16n chia hết cho 384 với mọi n chẵn và n>4
Chứng minh rằng với mọi số tự nhiên n chẵn thì: (n4 -4n3 -4n2 +16n)chia hết cho 384
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
CMR n^4-4.n^3-4n^2+16n chia hết cho 384 với n chẵn, n> hoặc =4
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Chứng minh rằng các số có dạng \(n^4-4n^3-4n^2+16n\) với \(n\)chẵn và lớn hơn 4 thì chia hết cho \(384\)
GIÚP MIK VỚI
Đặt A = n4 - 4n3 - 4n2 + 16n
= n3(n - 4) - 4n(n - 4)
= (n - 4)(n3 - 4n)
= (n - 4)n(n2 - 4)
= (n - 4)n(n - 2)(n + 2)
= (n - 4)(n - 2)n(n + 2)
Vì n chẵn => n = 2k (k \(\inℕ^∗\))
Khi đó A = (2k - 4)(2k - 2)2k(2k + 2)
= 2(k - 2).2(k - 1).2k.2(k + 1)
= 16(k - 2)(k - 1)k(k + 1)
Vì (k - 2)(k - 1)k(k + 1) là tích 4 số nguyên liên tiếp
=> Tồn tại 2 số chia hết cho 2 ; 4
Mà n > 4 => k > 2
=> (k - 2)(k - 1).k(k + 1) \(⋮\)8
lại có (k - 2)(k - 1)k(k + 1) \(⋮\)3 (tích 4 số liên tiếp => tồn tại 1 số chia hết cho 3)
Mà ƯCLN(8;3) = 1
=> (k - 2)(k - 1)k(k + 1) \(⋮\)8.3 = 24
=> A \(⋮\)384
n chẵn > 4 mà Xyz ?