HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4 n = 2k ( k N, k > 2) A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4. k(k – 2)(k – 1)(k + 1) 8 A 16.8 hay A 128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A 3 mà (3; 128) = 1 nên A 384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4
bạn chứng minh tương tự như trên nhé tha số thôi
4042 nhá bạn