chứng minh rằng n+3 và 2n+5 là 2 số nguyên tố cùng nhau
giải ra rõ ràng giúp mình nha
Cho n thuộc N, chứng minh rằng n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau !
Giúp mình nha ! Giải cả lời giải ra hộ mình !
Ai làm đúng và nhanh nhất mình like cho !
Thanks !
gọi UCLN(n+3; 2n + 5) = d
=> n+3 chia hết cho d và 2n + 5 chia hết cho d
=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d
=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau
gọi UCLN(n+3;2n+5) là d
theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d
2n+5 chia hết cho d
-> (2n+6)-(2n+5) chia hết cho d
-> 2n+6-2n-5 chia hết cho d
-> 1 chia hết cho d
Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT ! :)
CMR: 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Bạn nào biết làm rõ ràng dùm mình nha, mơn mấy bạn!
Gọi ƯCLN( 2n+5, 3n+7) là d
Ta có :
2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
<=> 6n+15 chia hết cho d (1)
3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
<=> 6n+14 chia hết cho d (2)
=> (6n+15) - ( 6n+14) chia hết cho d hay 1 chia hết cho d
--> 2n+5, 3n+7 nguyên tố cùng nhau (đpcm)
\(2n+5\)và \(3n+7\)
Gọi ƯC của \(2n+5\)và \(3n+7\)là d .
Ta có :
\(2n+5=6n+15\)
\(3n+7=6n+14\)
\(\Rightarrow6n\div6n=d=1\)
mà 15 và 14 là hai số có ƯC là 1
Vậy ƯC(15;14) = 1
...
Gọi d là ƯCLN(2n+5;3n+7) (Đk: d \(\in\)N*)
Ta có \(2n+5⋮d\); \(3n+7⋮d\)
\(\Rightarrow3\left(2n+5\right)⋮d\); \(2\left(3n+7\right)⋮d\)
\(\Rightarrow6n+15⋮d\); \(6n+14⋮d\)
\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\in\)N*
=> d = 1
=> ƯCLN(2n+5;3n+7) = 1
=> đpcm
Chứng minh rằng với mọi số tự nhiên n thì:
2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Giúp mình nha mấy bạn!
Chứng minh rằng với n thuộc N thì :
a) n +2 và n+3 là hai số nguyên tố cùng nhau
b)2n +3 và 3n+5 là hai số nguyên tố cùng nhau.
Mọi người giúp mình với nha.Mình cần gấp lắm á :)))))
mk chắc chắn 100% là mk ko bt
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
he nhô mọi người.
Giải giúp mình bài này .Hơi nhanh xíu nha mình cần gấp
a)Tổng ba số nguyên tố bằng 132.Tìm số nguyên tố nhỏ nhất
b) Tìm số nguyên tố p để p + 10 và p +20 là nguyên tố
a, Chứng tỏ rằng : A = 5 + 5^2 + 5^3 + ...... + 5^2004 chia hết cho 126
b, Cho a , b là hai số nguyên tố cùng nhau . Chứng tỏ rằng các số b và a-b nguyên tố cùng nhau ( với a > b )
Giải rõ ràng hộ mình nhé !!!
chứng minh rằng nếu P và 2P+1 là số nguyên tố thì 4P +1 là hợp số
làm giải rõ ràng ra nha , ai nhanh nhất chính xác nhất mình tick cho !
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Cho n là số tự nhiên. Chứng minh 2n+3 và n+1 là hai số nguyên tố cùng nhau.
Các bạn nhớ giúp mình nha!
Gọi d là U7CLN(2n+3;n+1)
Ta có : 2n+3 chia hết cho d và n+1 chia hết cho d
Từ đó , ta suy ra : {(2n+3)-[2(n+1)]} chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>(2n-2n)+(3-2) chia hết cho d
=> 0 + 1 chia hết cho d
=> 1 chia hết cho d
Suy ra : d = 1 [ tức là ƯCLN(2n+3;n+1)=1]
Vậy : 2n+3 và n+1 là hai số nguyên tố cùng nhau
Gọi d = UCLN(2n+3; n+1)
Ta có: 2n+3 và n+1 chia hết cho d
[2n+3-2(n+1)] chia hết cho d
2n+3-2n+2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy hai số 2n+3 và n+1 là hai số nguyên tố cùng nhau
cách giải nè
gọi m là ƯCLN(2n+3;n+1)
=>(n+1)chia hết cho m (vì ko viết đc dấu chia hết nên mk phải viết chữ bạn thông cảm)
=>2 x (n+1) Chia hết cho m
=>(2n+2 )chia hết cho m
=>[(2n+3)-(2n+2)] chia hết cho m
=>1 chia hết cho m
=>m=1
=>ƯCLN(2n+3;n+1)=1
=>2 số đó là 2 SNT cùng nhau
chúc bn hk tốt
giúp mình với mình cần gấp lắm , ai nhanh mình tick cho nhé
1 a,chứng minh 2 số sau nguyên tố cùng nhau : 2n + 1 và 6n + 5
b, cho x là số tự nhiên lẻ , y là số tự nhiên .chứng tỏ rằng : x và xy + 8 là 2 số nguyên tố cùng nhau
( làm cụ thể ra hộ mình )