Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Time Lord
Xem chi tiết
GV
21 tháng 12 2017 lúc 10:43

Bạn tham khảo lời giải chi tiết ở đường link dưới đây nhé:

Câu hỏi của nguyễn thế an - Toán lớp 8 - Học toán với OnlineMath

zZz Cool Kid_new zZz
Xem chi tiết
Nguyễn Vũ Hoàng
15 tháng 5 2021 lúc 19:26

Đây mà là ngữ văn lớp 1 á?

Khách vãng lai đã xóa
Nguyễn Hải Đăng ( ɻɛɑm ʙ...
15 tháng 5 2021 lúc 19:27

ngữ văn ko phải toán ko giải dc với đây là toán lớp 6 nha

Khách vãng lai đã xóa
Lê Thị Trà MI
Xem chi tiết
GV
21 tháng 12 2017 lúc 10:51

Ta có: \(x+y+z=\left(by+cz\right)+\left(ax+cz\right)+\left(ax+by\right)=2\left(ax+by+cz\right)\)

=> \(x+y+z=2\left(ax+by+cz\right)=2\left[\left(ax+by\right)+cz\right]=2\left[z+cz\right]=2\left(1+c\right)z\)

=> \(\frac{1}{1+c}=\frac{2z}{x+y+z}\)    (1)

Tượng tự:

    \(\frac{1}{1+a}=\frac{2x}{x+y+z}\)    (2)

    \(\frac{1}{1+b}=\frac{2y}{x+y+z}\)     (3)

Cộng các vế của (1), (2), (3) ta có:

    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)

Tran Le Khanh Linh
10 tháng 5 2020 lúc 16:54

Ta có x+y=ax+by+2cz=z+2cz 

=> x+y-z=2cz

=> \(c=\frac{x+y-z}{2z}\Rightarrow c+1=\frac{x+y-z}{2z}+1=\frac{x+y+z}{2z}\)

\(\Rightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)

\(y+z=2ax+by+cz\Rightarrow y+z-x=2ax\Rightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{x+y+z}{2x}\)

\(\Rightarrow\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right)\)

\(z+x=2by+ax+cz=2by+y\Rightarrow z+x-y=2by\)

\(\Rightarrow b=\frac{z+x-y}{2y}\Rightarrow b+1=\frac{z+x-y}{2y}+1=\frac{x+y+z}{2y}\)

\(\Rightarrow\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)

Cộng từng vế của (1)(2)(3) ta có 

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khách vãng lai đã xóa
Nguyen Bao Linh
Xem chi tiết
Nguyen Bao Linh
28 tháng 1 2017 lúc 7:50

Ta có x + y = 2cz + ax + by = 2cz + z

hay 2cz = x + y - z, suy ra c = \(\frac{x+y-z}{2z}\)

do đó: \(1+c=\frac{x+y+z}{2z}\) hay \(\frac{1}{1+c}=\frac{2z}{z+y+z}\)

Tương tự \(1+a=\frac{x+y+z}{2x}\) hay \(\frac{1}{1+a}=\frac{2x}{x+y+z}\)

\(1+b=\frac{x+y+z}{2y}\) hay \(\frac{1}{1+b}=\frac{2y}{x+y+z}\)

Vậy \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Kuro Kazuya
28 tháng 1 2017 lúc 15:18

Ta có \(\left\{\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}ax+x=ax+by+cz\\by+y=ax+by+cz\\cz+z=ax+by+cz\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x\left(a+1\right)=ax+by+cz\\y\left(b+1\right)=ax+by+cz\\z\left(c+1\right)=ax+by+cz\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a+1=\frac{ax+by+cz}{x}\\b+1=\frac{ax+by+cz}{y}\\c+1=\frac{ax+by+cz}{z}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+1}=\frac{x}{ax+by+cz}\\\frac{1}{b+1}=\frac{y}{ax+by+cz}\\\frac{1}{c+1}=\frac{z}{ax+by+cz}\end{matrix}\right.\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}\)

Ta lại có \(\left\{\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)

\(\Rightarrow x+y+z=2\left(ax+by+cz\right)\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=\frac{2\left(ax+by+cz\right)}{ax+by+cz}=2\)

Vậy \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\left(đpcm\right)\)

Hoàng Phúc
Xem chi tiết
Trần Đức Thắng
20 tháng 1 2016 lúc 21:35

Cộng vế với vế của ba đẳng thức ta đc :

\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)

Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)

<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)

=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)

CMTT với 1/b+1 và 1/c+1 

=> ĐPCM 

giap hoang
Xem chi tiết
Phùng Minh Quân
14 tháng 11 2018 lúc 8:33

Ta có : \(y+z=ax+cz+ax+by=2ax+x\)

\(\Rightarrow\)\(y+z-x=2ax\)\(\Rightarrow\)\(a=\frac{y+z-x}{2x}\)\(\Rightarrow\)\(\frac{1}{a+1}=\frac{2x}{x+y+z}\)

Tương tự, ta cũng có \(\frac{1}{b+1}=\frac{2y}{x+y+z};\frac{1}{c+1}=\frac{2z}{x+y+z}\)

\(\Rightarrow\)\(S=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Chúc bạn học tốt ~ 

Hibari Kyoya_NMQ
Xem chi tiết
Kurosaki Akatsu
16 tháng 8 2017 lúc 15:03

Làm biếng chép :'<

Link : Câu hỏi jj đó vào đây rồi biết :)) 

Hibari Kyoya_NMQ
17 tháng 8 2017 lúc 9:24
dài quá, ko chép đâu
HKT_Bí Mật
18 tháng 8 2017 lúc 21:20

lười quá đê ông ơi

Trần Thanh Dương
Xem chi tiết
Thắng Nguyễn
8 tháng 1 2017 lúc 19:46

Đặt \(ax^4=by^4=cz^4=t\)\(\Rightarrow a=\frac{t}{x^4};b=\frac{t}{y^4};c=\frac{t}{z^4}\)

Ta có: \(VT=\sqrt{ax^2+by^2+cz^2}=\sqrt{\frac{t}{x^2}+\frac{t}{y^2}+\frac{t}{z^2}}\)

\(=\sqrt{t\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\sqrt{t}\left(1\right)\)

\(VP=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{t}{x^4}+}\sqrt{\frac{t}{y^4}}+\sqrt{\frac{t}{z^4}}\)

\(=\frac{\sqrt{t}}{x^2}+\frac{\sqrt{t}}{y^2}+\frac{\sqrt{t}}{z^2}=\sqrt{t}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=\sqrt{t}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh

Shizadon
8 tháng 1 2017 lúc 20:19

Đúng rồi đấy!

Mạnh Châu
8 tháng 1 2017 lúc 20:37

Chuẩn CMNR

Ken Tom Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 18:17

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế :

\(x+y+z=2\left(ax+by+cz\right)\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Lại có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}=\frac{x}{ax+by+cz}\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz};\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x}{ax+by+cz}+\frac{y}{ax+by+cz}+\frac{z}{ax+by+cz}\)

\(=\frac{x+y+z}{ax+by+cz}=2\)

Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 18:10

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế : 

\(x+y+z=2\left(ax+by+cz\right)\)\(\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Ta có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}\)

\(\Rightarrow\frac{1}{a+1}=\frac{x}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=2\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz}\) ; \(\frac{1}{c+1}=\frac{z}{ax+by+cz}\)