tính 1/2+1/4+1/8+...+1/152
1/2 + 1/4 + 1/8 + 1/16 + ............ + 1/152
Đặt tổng trên = A
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\right)\)
\(A=1-\frac{1}{152}\)
\(A=\frac{151}{152}\)
\(\text{Đặt tổng trên = A}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{76}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{152}\right)\)
\(A=1-\frac{1}{152}\)
$A=\frac{151}{152}$
B=(1-1/2)+(1-1/4)+(1-1/8)+.......+(1-1/152)+(1-1/1024)+(1-2048)
viết kết quả bài toán sau:
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/152.
Đặt A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
A=1/21+1/22+1/23+1/24+1/25+1/26+1/27+1/28
1/2A=1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29
A-1/2A=(1/2+1/22+1/23+1/24+1/25+1/26+1/27+1/28)-(1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29)
1/2A=1/2-1/29
A=2(1/2-1/29)
A=1-1/28
A=28-1
Tính nhanh
C=1/2+1/4+1/35+1/65+1/104+1/152
\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=\frac{431}{532}\)
Tính nhanh:
a) 153^2+99×153+47^2.
b) 126^2-152×126+5776.
c) 3^8×5^8-(15^4-1)×(15^4+1).
d) (2+1)×(2^2+1)×(2^4+1)...(2^32+1)+1
Ai giúp mình làm bài này với. Mình cảm ơn nhiều.
a) 153^2+99.153+47^2
= 153^2+2.47.153+47^2
= (153+47)^2
=200^2
=40000
b) 126^2-152.126+5776
= 126^2-2.76.126+76^2
= (126-76)^2
= 50^2
= 2500
c)3^8.5^8-(15^4-1).(15^4+1)
= 15^8-[(15^4)^2-1^2]
= 15^8-15^8+1
=1
d) (2+1).(2^2+1).(2^4+1)...(2^32+1)+1
= 1.(2+1).(2^2+1).(2^4+1)...(2^32+1)+1
= (2-1).(2+1).(2+1).(2^4+1)...(2^32+1)+1
= (2^2-1).(2^2+1).(2^4+1)...(2^32+1)+1
= (2^4-1).(2^4+1)...(2^32+1)+1
= (2^8-1)...(2^32+1)+1
= (2^32-1).(2^32+1)+1
= 2^64-1+1
= 2^64
Thực hiện phép tính:
1, 3/5 + -4/15
2, -1/3 + 2/5 + 2/15
3, -3/5 + 7/21 + -4/5 + 7/5
1, 3/5 + -4/15 = \(\dfrac{9}{15}\)+ \(\dfrac{-4}{15}\)= \(\dfrac{5}{15}\)= \(\dfrac{1}{3}\)
2, -1/3 + 2/5 + 2/15= \(\dfrac{-5}{15}+\dfrac{6}{15}+\dfrac{2}{15}\)=\(\dfrac{3}{15}=\dfrac{1}{5}\)
3, -3/5 + 7/21 + -4/5 + 7/5= \(\dfrac{1}{3}\)
\(1.\dfrac{3}{5}+\dfrac{-4}{15}=\dfrac{9}{15}+\dfrac{-4}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
\(2.\dfrac{-1}{3}+\dfrac{2}{5}+\dfrac{2}{15}=\dfrac{-5}{15}+\dfrac{6}{15}+\dfrac{2}{15}=\dfrac{3}{15}=\dfrac{1}{5}\)
\(3.\dfrac{-3}{5}+\dfrac{7}{21}+\dfrac{-4}{5}+\dfrac{7}{5}=\left(\dfrac{-3}{5}+\dfrac{-4}{5}+\dfrac{7}{5}\right)+\dfrac{7}{21}=0+\dfrac{7}{21}=\dfrac{1}{3}\)
\(1,\dfrac{3}{5}+\dfrac{-4}{15}=\dfrac{9}{15}+\dfrac{-4}{15}\\ =\dfrac{9-4}{15}=\dfrac{1}{3}\\ 2,\dfrac{-1}{3}+\dfrac{2}{5}+\dfrac{2}{15}=\dfrac{-5}{15}+\dfrac{6}{15}+\dfrac{2}{15}\\ =\dfrac{3}{15}=\dfrac{1}{5}\)
Thực hiện phép tính:
1, 3/5 + -4/15
2, -1/3 + 2/5 + 2/15
3, -3/5 + 7/21 + -4/5 + 7/5
Bài 1: Tính:
a) 1+1+2+3+5+8+13+...+89
b)1+3+4+7+11+18+...+123
c)Q=4+5+9+14+23+...+157
d)T=2+6+8+14+22+...+152
Thực hiện phép tính ( tính nhanh nếu có thể ):
a, ( -3/4 + 5/13 ) : 2/7 - ( 9/4 + 8/13 ) : 2/7
b, (-12 . 2/7 + 8/9 : 7/2 - 2/7 . 5/18 ) . 7/2
c, 45/4 - ( 19/7 + 21/4 )
d, -1/4 . 152/11 - 0,25 . 68/11
a: \(=\dfrac{7}{2}\left(-\dfrac{3}{4}+\dfrac{5}{13}-\dfrac{9}{4}-\dfrac{8}{13}\right)=\dfrac{7}{2}\cdot\left(-3-\dfrac{3}{13}\right)=\dfrac{7}{2}\cdot\dfrac{-42}{13}=\dfrac{-147}{13}\)
b: \(=-12+\dfrac{8}{9}-\dfrac{5}{18}=\dfrac{-216}{18}+\dfrac{16}{18}-\dfrac{5}{18}=\dfrac{-205}{18}\)
c: \(=\dfrac{45}{4}-\dfrac{19}{7}-\dfrac{21}{4}=6-\dfrac{19}{7}=\dfrac{23}{7}\)
d: \(=\dfrac{-1}{4}\left(\dfrac{152}{11}+\dfrac{68}{11}\right)=\dfrac{-1}{4}\cdot20=-5\)
a) A=3/4*8/9*15/16+...+899/900 b)B=1/1*2*3+1/2*3*1+1/3*4*5+...+1/98*99*100
c)C=1/2+1/14+1/35+1/65+1/104+1/152 d) D=1/1*2*3*4+1/2*3*4*5+1/3*4*5*6+...+1/27*28*29*30
giải giúp mk
a,
\(A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{900}\right)\\ =\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)...\left(1-\frac{1}{30}\right)\left(1+\frac{1}{30}\right)\\ =\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{31}{30}\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{31}{30}\\ =\frac{1\cdot2\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\frac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}\\ =\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)
b,
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{100-98}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\\ =\frac{1}{2}\cdot\frac{4450-1}{9900}=\frac{1}{2}\cdot\frac{4449}{9900}=\frac{4449}{19800}=\frac{1483}{6600}\)
c, (Chịu :V)
d,
\(D=\frac{1}{3}\left(\frac{3}{1\cdot2\cdot3\cdot4}+\frac{3}{2\cdot3\cdot4\cdot5}+...+\frac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{4-1}{1\cdot2\cdot3\cdot4}+\frac{5-2}{2\cdot3\cdot4\cdot5}+...+\frac{30-27}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29}-\frac{1}{28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24630}\right)\\ =\frac{228}{4105}\)
Chúc bạn học tốt nha.